On the existence of maximal subrings in commutative noetherian rings

被引:6
作者
Azarang, A. [1 ]
机构
[1] Chamran Univ, Dept Math, Ahvaz, Iran
关键词
Maximal subring; commutative rings; Noetherian; EXTENSIONS; CLASSIFICATION; FINITENESS; MODULES; FIELDS; FIP;
D O I
10.1142/S021949881450073X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we generalize the results of [Submaximal integral domains, Taiwanese J. Math. 17(4) (2013) 1395-1412; Which fields have no maximal subrings? Rend. Sem. Mat. Univ. Padova 126 (2011) 213-228; On the existence of maximal subrings in commutative artinian rings, J. Algebra Appl. 9(5) (2010) 771-778; On maximal subrings of commutative rings, Algebra Colloq. 19(Spec 1) (2012) 1125-1138] for the existence of maximal subrings in a commutative noetherian ring. First, we show that for determining when an infinite noetherian ring R has a maximal subring, it suffices to assume that R is an integral domain with vertical bar R/I vertical bar < vertical bar R vertical bar for each nonzero ideal I of R. We determine when the latter integral domains have maximal subrings. In particular, we show that every uncountable noetherian ring has a maximal subring.
引用
收藏
页数:10
相关论文
共 50 条
[21]   The maximal regular ideal of some commutative rings [J].
Abu Osba, Emad ;
Henriksen, Melvin ;
Alkam, Osama ;
Smith, F. A. .
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2006, 47 (01) :1-10
[22]   On commutative rings whose maximal ideals are idempotent [J].
Kourki, Farid ;
Tribak, Rachid .
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2019, 60 (03) :313-322
[23]   On the genus of the k-maximal hypergraph of commutative rings [J].
Selvakumar, K. ;
Amritha, V. C. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (01)
[24]   Maximal subrings up to isomorphism of fields [J].
Azarang, Alborz ;
Parsa, Nasrin .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025,
[25]   Co-maximal graph of non-commutative rings [J].
Wang, Hsin-Ju .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (2-3) :633-641
[26]   Subgraph of generalized co-maximal graph of commutative rings [J].
Biswas, B. ;
Kar, S. ;
Sen, M. K. .
SOFT COMPUTING, 2022, 26 (04) :1587-1596
[27]   Weakly Laskerian rings versus Noetherian rings [J].
Bahmanpour, Kamal ;
Divaani-Aazar, Kamran .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 138 :239-256
[28]   A description of ideals in Noetherian rings [J].
Cáceres-Duque, L ;
Nelson, GC .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (07) :3039-3060
[29]   Endo-Noetherian rings [J].
Gouaid, Badreddine ;
Hamed, Ahmed ;
Benhissi, Ali .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (02) :563-572
[30]   Noetherian completion and PI rings [J].
Braun, Amiram .
ISRAEL JOURNAL OF MATHEMATICS, 2015, 209 (01) :487-506