Lower Gaussian heat kernel bounds for the random conductance model in a degenerate ergodic environment

被引:6
作者
Andres, Sebastian [1 ]
Halberstam, Noah [2 ,3 ]
机构
[1] Univ Manchester, Manchester, Lancs, England
[2] Univ Cambridge, Cambridge, England
[3] Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WB, England
关键词
Random conductance model; Heat kernel; Ergodic; PARABOLIC HARNACK INEQUALITY; INVARIANCE-PRINCIPLE; RANDOM-VARIABLES; RANDOM-WALKS; HOMOGENIZATION; ASSOCIATION; PERCOLATION; THEOREM; DECAY;
D O I
10.1016/j.spa.2021.05.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the random conductance model on Z(d) with ergodic, unbounded conductances. We prove a Gaussian lower bound on the heat kernel given a polynomial moment condition and some additional assumptions on the correlations of the conductances. The proof is based on the well-established chaining technique. We also obtain bounds on the Green's function. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 228
页数:17
相关论文
共 45 条
  • [1] CONVERGENCE OF AVERAGES OF POINT TRANSFORMATIONS
    AKCOGLU, MA
    DELJUNCO, A
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 49 (01) : 265 - 266
  • [2] Invariance principle for the random conductance model
    Andres, S.
    Barlow, M. T.
    Deuschel, J. -D.
    Hambly, B. M.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (3-4) : 535 - 580
  • [3] Quenched local limit theorem for random walks among time-dependent ergodic degenerate weights
    Andres, Sebastian
    Chiarini, Alberto
    Slowik, Martin
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (3-4) : 1145 - 1181
  • [4] Andres S, 2021, J STAT PHYS, V182, DOI 10.1007/s10955-021-02705-5
  • [5] Green kernel asymptotics for two-dimensional random walks under random conductances
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 14
  • [6] Berry-Esseen theorem and quantitative homogenization for the random conductance model with degenerate conductances
    Andres, Sebastian
    Neukamm, Stefan
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2019, 7 (02): : 240 - 296
  • [7] Heat kernel estimates and intrinsic metric for random walks with general speed measure under degenerate conductances
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [8] Heat kernel estimates for random walks with degenerate weights
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [9] Harnack inequalities on weighted graphs and some applications to the random conductance model
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2016, 164 (3-4) : 931 - 977
  • [10] INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL IN A DEGENERATE ERGODIC ENVIRONMENT
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    [J]. ANNALS OF PROBABILITY, 2015, 43 (04) : 1866 - 1891