Quasi-interpolation in isogeometric analysis based on generalized B-splines

被引:48
作者
Costantini, Paolo [1 ]
Manni, Carla [2 ]
Pelosi, Francesca [2 ]
Sampoli, M. Lucia [1 ]
机构
[1] Univ Siena, Dipartimento Sci Matemat & Informat, I-53100 Siena, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00173 Rome, Italy
关键词
Quasi-interpolation; Isogeometric analysis; Generalized B-splines;
D O I
10.1016/j.cagd.2010.07.004
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Isogeometric analysis is a new method for the numerical simulation of problems governed by partial differential equations. It possesses many features in common with finite element methods (FEM) but takes some inspiration from Computer Aided Design tools. We illustrate how quasi-interpolation methods can be suitably used to set Dirichlet boundary conditions in isogeometric analysis. In particular, we focus on quasi-interpolant projectors for generalized B-splines, which have been recently proposed as a possible alternative to NURBS in isogeometric analysis. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:656 / 668
页数:13
相关论文
共 23 条
  • [1] Boor C.D., 2001, A Practical Guide to Splines
  • [2] Critical length for design purposes and extended Chebyshev spaces
    Carnicer, JM
    Mainar, E
    Peña, JM
    [J]. CONSTRUCTIVE APPROXIMATION, 2003, 20 (01) : 55 - 71
  • [3] On a class of weak Tchebycheff systems
    Costantini, P
    Lyche, T
    Manni, C
    [J]. NUMERISCHE MATHEMATIK, 2005, 101 (02) : 333 - 354
  • [4] Costantini P, 2006, REND MAT APPL, V26, P327
  • [5] COSTANTINI P, 2010, 498 U SIEN DEP MATH
  • [6] DEBOOR C, 1990, NATO ADV SCI I C-MAT, V307, P313
  • [7] Adaptive isogeometric analysis by local h-refinement with T-splines
    Doerfel, Michael R.
    Juettler, Bert
    Simeon, Bernd
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 264 - 275
  • [8] Hoschek J., 1993, Fundamentals of computer aided geometric design
  • [9] Efficient quadrature for NURBS-based isogeometric analysis
    Hughes, T. J. R.
    Reali, A.
    Sangalli, G.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 301 - 313
  • [10] Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
    Hughes, TJR
    Cottrell, JA
    Bazilevs, Y
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (39-41) : 4135 - 4195