Additive manufacturing of high density pure tungsten by electron beam melting

被引:44
作者
Dorow-Gerspach, D. [1 ]
Kirchner, A. [2 ]
Loewenhoff, Th. [1 ]
Pintsuk, G. [1 ]
Weissgaerber, T. [2 ]
Wirtz, M. [1 ]
机构
[1] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[2] Fraunhofer Inst Mfg Technol & Adv Mat IFAM, D-01277 Dresden, Germany
关键词
Selective electron beam melting; Tungsten; Transient heat loads; Microstructure; Monoblock; HIGH-HEAT-FLUX; DESIGN; DENSIFICATION; BEHAVIOR;
D O I
10.1016/j.nme.2021.101046
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Tungsten is an outstanding material and due to its properties like highest melting point and tensile strength of all natural metals and its high thermal conductivity it is a prime candidate for being used in very harsh environments and for challenging applications like X-ray tubes or as plasma facing material (PFM) in fusion reactors. Unfortunately, high brittle to ductile transition temperature and hardness represent a great challenge for classic manufacturing processes. Additive manufacturing (AM) of tungsten could overcome these limitations and resulting design restrictions. However, AM of tungsten also poses challenges in particular related to the production of material of high density and mechanical stability. Using a selective electron beam melting and a base temperature of 1000 degrees C of the powder, we were able to produce tungsten with a theoretical density of 99 % without the need of any post-treatment like a second melting step or a redensification by e.g. hot isostatic pressing (HIP). The surface morphology, microstructure, hardness, thermal conductivity and stability against severe transient heat loads were investigated with respect to the relevant building parameters and compared with recrystallized standard W. Besides simple test geometries also more sophisticated ones like monoblocks were successfully realized illustrating the potential of AM for fusion.
引用
收藏
页数:8
相关论文
共 21 条
[1]   Thermal stability of a highly-deformed warm-rolled tungsten plate in the temperature range 1100-1250 °C [J].
Alfonso, A. ;
Jensen, D. Juul ;
Luo, G. -N. ;
Pantleon, W. .
FUSION ENGINEERING AND DESIGN, 2015, 98-99 :1924-1928
[2]  
BATCHELOR J.D., 2012, J. Spacecr. Rockets, DOI DOI 10.2514/3.27714
[3]   Design optimization of the ITER tungsten divertor vertical targets [J].
Hirai, T. ;
Carpentier-Chouchana, S. ;
Escourbiac, F. ;
Panayotis, S. ;
Durocher, A. ;
Ferrand, L. ;
Garcia-Martinez, M. ;
Gunn, J. P. ;
Komarov, V. ;
Merola, M. ;
Pitts, R. A. ;
De Temmerman, G. .
FUSION ENGINEERING AND DESIGN, 2018, 127 :66-72
[4]   Additive manufacturing of metallic components by selective electron beam melting - a review [J].
Koerner, C. .
INTERNATIONAL MATERIALS REVIEWS, 2016, 61 (05) :361-377
[5]  
Lassner E., 1999, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, DOI [10.1007/978-1-4615-4907-9, DOI 10.1007/978-1-4615-4907-9]
[6]   Experimental simulation of Edge Localised Modes using focused electron beams - features of a circular load pattern [J].
Loewenhoff, Th ;
Hirai, T. ;
Keusemann, S. ;
Linke, J. ;
Pintsuk, G. ;
Schmidt, A. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S51-S54
[7]   The new electron beam test facility JUDITH II for high heat flux experiments on plasma facing components [J].
Majerus, P ;
Duwe, R ;
Hirai, T ;
Kühnlein, W ;
Linke, J ;
Rödig, M .
FUSION ENGINEERING AND DESIGN, 2005, 75-79 :365-369
[8]  
Muller A, 2016, MICROSTRUCTURAL INVE
[9]   Physics conclusions in support of ITER W divertor monoblock shaping [J].
Pitts, R. A. ;
Bardin, S. ;
Bazylev, B. ;
van den Berg, M. A. ;
Bunting, P. ;
Carpentier-Chouchana, S. ;
Coenen, J. W. ;
Corre, Y. ;
Dejarnac, R. ;
Escourbiac, F. ;
Gaspar, J. ;
Gunn, J. P. ;
Hirai, T. ;
Hong, S-H. ;
Horacek, J. ;
Iglesias, D. ;
Komm, M. ;
Krieger, K. ;
Lasnier, C. ;
Matthews, G. F. ;
Morgan, T. W. ;
Panayotis, S. ;
Pestchanyi, S. ;
Podolnik, A. ;
Nygren, R. E. ;
Rudakov, D. L. ;
De Temmerman, G. ;
Vondracek, P. ;
Watkins, J. G. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :60-74
[10]   Physics basis and design of the ITER plasma-facing components [J].
Pitts, R. A. ;
Carpentier, S. ;
Escourbiac, F. ;
Hirai, T. ;
Komarov, V. ;
Kukushkin, A. S. ;
Lisgo, S. ;
Loarte, A. ;
Merola, M. ;
Mitteau, R. ;
Raffray, A. R. ;
Shimada, M. ;
Stangeby, P. C. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S957-S964