ON SOME SUBCLASSES OF HARMONIC MAPPINGS

被引:6
作者
Ghosh, Nirupam [1 ]
Allu, Vasudevarao [2 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, Odisha, India
关键词
analytic; univalent; starlike; convex; close-to-convex; harmonic mapping; convolution; right half-plane mapping; UNIVALENT; CONVEX;
D O I
10.1017/S0004972719000698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P0 H ( M) denote the class of normalised harmonic mappings f = h + g in the unit disk D satisfying Re (zh00(z)) > M + jzg00(z) j, where h0 (0) 1 = 0 = g0(0) and M > 0. Let B0 H (M) denote the class of sense-preserving harmonic mappings f = h + g in the unit disk D satisfying jzh00 (z) j M jzg00 (z) j, where M > 0. We discuss the coe fficient bound problem, the growth theorem for functions in the class P0 H (M) and a two-point distortion property for functions in the class B-H(0) (M).
引用
收藏
页码:130 / 140
页数:11
相关论文
共 15 条
[1]   Harmonic Maps and Ideal Fluid Flows [J].
Aleman, A. ;
Constantin, A. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (02) :479-513
[2]  
Bazilevich I.E., 1945, MATH J AVIAT I MOSCO, P29
[3]   On close-to-convex harmonic mappings [J].
Bshouty, D. ;
Joshi, S. S. ;
Joshi, S. B. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (09) :1195-1199
[4]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[5]   A harmonic maps approach to fluid flows [J].
Constantin, Olivia ;
Martin, Maria J. .
MATHEMATISCHE ANNALEN, 2017, 369 (1-2) :1-16
[6]   Some basic properties of certain subclass of harmonic univalent functions [J].
Ghosh, Nirupam ;
Vasudevarao, A. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (12) :1687-1703
[7]   Radius of close-to-convexity and fully starlikeness of harmonic mappings [J].
Kalaj, David ;
Ponnusamy, Saminathan ;
Vuorinen, Matti .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (04) :539-552
[8]   INJECTIVITY OF SECTIONS OF CLOSE-TO-CONVEX HARMONIC MAPPINGS WITH FUNCTIONS CONVEX IN ONE DIRECTION AS ANALYTIC PART [J].
Kaliraj, A. Sairam .
PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2018, 7 (02) :131-143
[9]   2-POINT DISTORTION-THEOREMS FOR UNIVALENT-FUNCTIONS [J].
KIM, SA ;
MINDA, D .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 163 (01) :137-157
[10]   Fully starlike and fully convex harmonic mappings of order α [J].
Nagpal, Sumit ;
Ravichandran, V. .
ANNALES POLONICI MATHEMATICI, 2013, 108 (01) :85-107