LACE: Inference of cancer evolution models from longitudinal single-cell data

被引:9
作者
Ramazzotti, Daniele [1 ]
Angaroni, Fabrizio [2 ]
Maspero, Davide [2 ,3 ,4 ]
Ascolani, Gianluca [2 ]
Castiglioni, Isabella [4 ,5 ]
Piazza, Rocco [1 ,6 ]
Antoniotti, Marco [2 ,6 ]
Graudenzi, Alex [4 ,6 ]
机构
[1] Univ Milano Bicocca, Dept Med & Surg, Monza, Italy
[2] Univ Milano Bicocca, Dept Informat Syst & Commun, Milan, Italy
[3] Fdn IRCCS Ist Nazl Tumori, Milan, Italy
[4] Consiglio Nazl Ric IBFM CNR, Inst Mol Bioimaging & Physiol, Milan, Italy
[5] Univ Milano Bicocca, Dept Phys Giuseppe Occhialini, Milan, Italy
[6] Bicocca Bioinformat Biostat & Bioimaging Ctr B4, Milan, Italy
关键词
Cancer evolution; Single-cell sequencing; Longitudinal data; Phylogenomics; INTRATUMOR HETEROGENEITY; POPULATION; DYNAMICS; KINASE; TREES;
D O I
10.1016/j.jocs.2021.101523
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The rise of longitudinal single-cell sequencing experiments on patient-derived cell cultures, xenografts and organoids is opening new opportunities to track cancer evolution, assess the efficacy of therapies and identify resistant subclones. We introduce LACE, the first algorithmic framework that processes single-cell mutational profiles from samples collected at different time points to reconstruct longitudinal models of cancer evolution. The approach maximizes a weighted likelihood function computed on longitudinal data points to solve a Boolean matrix factorization problem, via Markov chain Monte Carlo sampling. On simulations, LACE outperforms state-of-the-art methods for both bulk and single-cell sequencing data with respect to the reconstruction of the ground-truth clonal phylogeny and dynamics, also in conditions of unbalanced datasets, significant rates of sequencing errors and sampling limitations. As the results are robust with respect to data-specific errors, LACE is effective with mutational profiles generated by calling variants from (full-length) scRNA-seq data, and this allows one to investigate the relation between genomic and phenotypic evolution of tumors at the single-cell level. Here, we apply LACE to a longitudinal scRNA-seq dataset of patient-derived xenografts of BRAFV600E/K mutant melanomas, dissecting the impact of BRAF/MEK-inhibition on clonal evolution, also in terms of clone-specific gene expression dynamics. Furthermore, the analysis of breast cancer PDXs from longitudinal targeted scDNA-sequencing experiments delivers a high-resolution temporal characterization of intra-tumor heterogeneity.
引用
收藏
页数:15
相关论文
共 83 条
[11]   A framework for variation discovery and genotyping using next-generation DNA sequencing data [J].
DePristo, Mark A. ;
Banks, Eric ;
Poplin, Ryan ;
Garimella, Kiran V. ;
Maguire, Jared R. ;
Hartl, Christopher ;
Philippakis, Anthony A. ;
del Angel, Guillermo ;
Rivas, Manuel A. ;
Hanna, Matt ;
McKenna, Aaron ;
Fennell, Tim J. ;
Kernytsky, Andrew M. ;
Sivachenko, Andrey Y. ;
Cibulskis, Kristian ;
Gabriel, Stacey B. ;
Altshuler, David ;
Daly, Mark J. .
NATURE GENETICS, 2011, 43 (05) :491-+
[12]   Computational methods for single-cell omics across modalities [J].
Efremova, Mirjana ;
Teichmann, Sarah A. .
NATURE METHODS, 2020, 17 (01) :14-17
[13]   Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution [J].
Eirew, Peter ;
Steif, Adi ;
Khattra, Jaswinder ;
Ha, Gavin ;
Yap, Damian ;
Farahani, Hossein ;
Gelmon, Karen ;
Chia, Stephen ;
Mar, Colin ;
Wan, Adrian ;
Laks, Emma ;
Biele, Justina ;
Shumansky, Karey ;
Rosner, Jamie ;
McPherson, Andrew ;
Nielsen, Cydney ;
Roth, Andrew J. L. ;
Lefebvre, Calvin ;
Bashashati, Ali ;
de Souza, Camila ;
Siu, Celia ;
Aniba, Radhouane ;
Brimhall, Jazmine ;
Oloumi, Arusha ;
Osako, Tomo ;
Bruna, Alejandra ;
Sandoval, Jose L. ;
Algara, Teresa ;
Greenwood, Wendy ;
Leung, Kaston ;
Cheng, Hongwei ;
Xue, Hui ;
Wang, Yuzhuo ;
Lin, Dong ;
Mungall, Andrew J. ;
Moore, Richard ;
Zhao, Yongjun ;
Lorette, Julie ;
Long Nguyen ;
Huntsman, David ;
Eaves, Connie J. ;
Hansen, Carl ;
Marra, Marco A. ;
Caldas, Carlos ;
Shah, Sohrab P. ;
Aparicio, Samuel .
NATURE, 2015, 518 (7539) :422-426
[14]   SPhyR: tumor phylogeny estimation from single-cell sequencing data under loss and error [J].
El-Kebir, Mohammed .
BIOINFORMATICS, 2018, 34 (17) :671-679
[15]   Inferring parsimonious migration histories for metastatic cancers [J].
El-Kebir, Mohammed ;
Satas, Gryte ;
Raphael, Benjamin J. .
NATURE GENETICS, 2018, 50 (05) :718-+
[16]   Inferring the Mutational History of a Tumor Using Multi-state Perfect Phylogeny Mixtures [J].
El-Kebir, Mohammed ;
Satas, Gryte ;
Oesper, Layla ;
Raphael, Benjamin J. .
CELL SYSTEMS, 2016, 3 (01) :43-53
[17]   Reconstruction of clonal trees and tumor composition from multi-sample sequencing data [J].
El-Kebir, Mohammed ;
Oesper, Layla ;
Acheson-Field, Hannah ;
Raphael, Benjamin J. .
BIOINFORMATICS, 2015, 31 (12) :62-70
[18]   Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing [J].
Gerlinger, Marco ;
Rowan, Andrew J. ;
Horswell, Stuart ;
Larkin, James ;
Endesfelder, David ;
Gronroos, Eva ;
Martinez, Pierre ;
Matthews, Nicholas ;
Stewart, Aengus ;
Tarpey, Patrick ;
Varela, Ignacio ;
Phillimore, Benjamin ;
Begum, Sharmin ;
McDonald, Neil Q. ;
Butler, Adam ;
Jones, David ;
Raine, Keiran ;
Latimer, Calli ;
Santos, Claudio R. ;
Nohadani, Mahrokh ;
Eklund, Aron C. ;
Spencer-Dene, Bradley ;
Clark, Graham ;
Pickering, Lisa ;
Stamp, Gordon ;
Gore, Martin ;
Szallasi, Zoltan ;
Downward, Julian ;
Futreal, P. Andrew ;
Swanton, Charles .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (10) :883-892
[19]   Evolutionary dynamics of carcinogenesis and why targeted therapy does not work [J].
Gillies, Robert J. ;
Verduzco, Daniel ;
Gatenby, Robert A. .
NATURE REVIEWS CANCER, 2012, 12 (07) :487-493
[20]   Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics [J].
Goodspeed, Andrew ;
Heiser, Laura M. ;
Gray, Joe W. ;
Costello, James C. .
MOLECULAR CANCER RESEARCH, 2016, 14 (01) :3-13