Prediction of response and toxicity to immune checkpoint inhibitor therapies (ICI) in melanoma using deep neural networks machine learning

被引:1
|
作者
Dawood, Zarmeena
Coudray, Nicolas
Kim, Randie H.
Nomikou, Sofia
Moran, Una
Weber, Jeffrey S.
Pavlick, Anna C.
Wilson, Melissa
Tsirigos, Aristotelis
Osman, Iman
机构
[1] NYU, Sch Med, Ronald O Perelman Dept Dermatol, New York, NY USA
[2] NYU, Sch Med, New York, NY USA
[3] NYU, Perlmutter Canc Ctr, New York, NY USA
[4] NYU Langone Med Ctr, Laura & Isaac Perlmutter Canc Ctr, New York, NY USA
[5] New York Univ, Sch Med, Div Hematol & Oncol, Dept Med, New York, NY USA
[6] NYU Sch Med, Dept Pathol, New York, NY USA
关键词
D O I
10.1200/JCO.2018.36.15_suppl.9529
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
9529
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Using machine learning algorithms to predict response and toxicity to immune checkpoint inhibitors (ICIs) in melanoma patients.
    Johannet, Paul
    Coudray, Nicolas
    Jour, George
    Donnelly, Douglas MacArthur
    Bajaj, Shirin
    Moran, Una
    Dawood, Zarmeena
    Nomikou, Sofia
    Kim, Randie H.
    Pavlick, Anna C.
    Weber, Jeffrey S.
    Tsirigos, Aristotelis
    Osman, Iman
    JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)
  • [2] Predicting onset and continuity of patient-reported symptoms in cancer patients undergoing immune checkpoint inhibitor (ICI) therapies using machine learning
    Livanainen, S. M. E.
    Ekstrom, J.
    Virtanen, H.
    Koivunen, J. P.
    ANNALS OF ONCOLOGY, 2019, 30
  • [3] Predicting objective response rate (ORR) in immune checkpoint inhibitor (ICI) therapies with machine learning (ML) by combining clinical and patient-reported data
    Iivanainen, S. M. E.
    Esktrom, J.
    Virtanen, H.
    Lang, L.
    Kataja, V.
    Koivunen, J.
    ANNALS OF ONCOLOGY, 2020, 31 : S1431 - S1431
  • [4] Predicting Objective Response Rate (ORR) in Immune Checkpoint Inhibitor (ICI) Therapies with Machine Learning (ML) by Combining Clinical and Patient-Reported Data
    Iivanainen, Sanna
    Ekstrom, Jussi
    Virtanen, Henri
    Kataja, Vesa V.
    Koivunen, Jussi P.
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [5] Novel Molecular Determinants of Response or Resistance to Immune Checkpoint Inhibitor Therapies in Melanoma
    Zhang, Wenjing
    Kong, Yujia
    Li, Yuting
    Shi, Fuyan
    Lyu, Juncheng
    Sheng, Chao
    Wang, Suzhen
    Wang, Qinghua
    FRONTIERS IN IMMUNOLOGY, 2022, 12
  • [6] Machine Learning Improves the Prediction of Responses to Immune Checkpoint Inhibitors in Metastatic Melanoma
    Tabari, Azadeh
    Cox, Meredith
    D'Amore, Brian
    Mansur, Arian
    Dabbara, Harika
    Boland, Genevieve
    Gee, Michael S.
    Daye, Dania
    CANCERS, 2023, 15 (10)
  • [7] De-correlating immune checkpoint inhibitor toxicity and response in melanoma via the microbiome
    Williams, Nyelia
    Wheeler, Caroline E.
    Husain, Marium
    Hoyd, Rebecca
    Meara, Alexa Simon
    Lynn, Mari
    Bibi, Amna
    Conrad, Bailey
    Gray, Shannon
    Bodnar, Michael
    Arya, Namrata
    Roberts, Scott
    Hoang, Phuong
    Apparicio, Jessica
    Merrill, Deanna
    Wu, Richard Cheng Han
    Verschraegen, Claire F.
    Burd, Christin Elizabeth
    Kendra, Kari Lynn
    Spakowicz, Daniel
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [8] Machine and Deep Learning Methods for Predicting Immune Checkpoint Blockade Response
    Ho, Danliang
    Motani, Mehul
    MACHINE LEARNING FOR HEALTH, VOL 193, 2022, 193 : 512 - 529
  • [9] Prediction of immune checkpoint inhibitor (ICI) response in patients with urothelial cancer (UC) by a novel RNA-based ICI response signature (ICI-PRS).
    Shepherd, Jonathan
    Mayhew, Gregory
    Guo, John
    Beebe, Kirk
    Eisner, Joel Robert
    Milburn, Michael Vance
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [10] Robust prediction of pan-cancer immune checkpoint blockade response using machine learning
    Chang, Tiangen
    Dhruba, Saugato R.
    Cao, Yingying
    Morris, Luc G.
    Ruppin, Eytan
    CANCER RESEARCH, 2023, 83 (07)