Large-scale Isolated Gesture Recognition Using Convolutional Neural Networks

被引:0
作者
Wang, Pichao [1 ]
Li, Wanqing [1 ]
Liu, Song [1 ]
Gao, Zhimin [1 ]
Tang, Chang [2 ]
Ogunbona, Philip [1 ]
机构
[1] Univ Wollongong, Adv Multimedia Res Lab, Wollongong, NSW, Australia
[2] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan, Hubei, Peoples R China
来源
2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2016年
关键词
gesture recognition; depth map sequences; Convolutional Neural Networks;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes three simple, compact yet effective representations of depth sequences, referred to respectively as Dynamic Depth Images (DDI), Dynamic Depth Normal Images (DDNI) and Dynamic Depth Motion Normal Images (DDMNI). These dynamic images are constructed from a sequence of depth maps using bidirectional rank pooling to effectively capture the spatial-temporal information. Such image-based representations enable us to fine-tune the existing ConvNets models trained on image data for classification of depth sequences, without introducing large parameters to learn. Upon the proposed representations, a convolutional Neural networks (ConvNets) based method is developed for gesture recognition and evaluated on the Large-scale Isolated Gesture Recognition at the ChaLearn Looking at People (LAP) challenge 2016. The method achieved 55.57% classification accuracy and ranked 2(nd) place in this challenge but was very close to the best performance even though we only used depth data.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [31] Gesture recognition based on deep deformable 3D convolutional neural networks
    Zhang, Yifan
    Shi, Lei
    Wu, Yi
    Cheng, Ke
    Cheng, Jian
    Lu, Hanqing
    PATTERN RECOGNITION, 2020, 107
  • [32] SEMG-BASED HAND GESTURE RECOGNITION VIA DILATED CONVOLUTIONAL NEURAL NETWORKS
    Rahimian, Elahe
    Zabihi, Soheil
    Atashzar, S. Farokh
    Asif, Amir
    Mohammadi, Arash
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [33] Facial Emotion Recognition using Convolutional Neural Networks
    Rzayeva, Zeynab
    Alasgarov, Emin
    2019 IEEE 13TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT 2019), 2019, : 91 - 95
  • [34] Integration of Convolutional Neural Network and Vision Transformer for gesture recognition using sEMG
    Liu, Xiaoguang
    Hu, Lijian
    Tie, Liang
    Jun, Li
    Wang, Xiaodong
    Liu, Xiuling
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 98
  • [35] Gesture Recognition based on Deep Convolutional Neural Network
    Jayanthi, P.
    Bhama, Ponsy R. K. Sathia
    2018 10TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2018, : 367 - 372
  • [36] Using Convolutional Neural Networks to Recognition of Dolphin Images
    Quinonez, Yadira
    Zatarain, Oscar
    Lizarraga, Carmen
    Peraza, Juan
    TRENDS AND APPLICATIONS IN SOFTWARE ENGINEERING (CIMPS 2018), 2019, 865 : 236 - 245
  • [37] Gesture Recognition for American Sign Language Using Pytorch and Convolutional Neural Network
    Sethia, Devashsih
    Singh, Pallavi
    Mohapatra, B.
    INTELLIGENT SYSTEMS AND APPLICATIONS, ICISA 2022, 2023, 959 : 307 - 317
  • [38] Sign Language Recognition Using Convolutional Neural Networks
    Pigou, Lionel
    Dieleman, Sander
    Kindermans, Pieter-Jan
    Schrauwen, Benjamin
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I, 2015, 8925 : 572 - 578
  • [39] Extreme Weather Recognition using Convolutional Neural Networks
    Zhu, Ziqi
    Zhuo, Li
    Qu, Panling
    Zhou, Kailong
    Zhang, Jing
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2016, : 621 - 625
  • [40] Automated Hand Gesture Recognition using a Deep Convolutional Neural Network model
    Dhall, Ishika
    Vashisth, Shubham
    Aggarwal, Garima
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 811 - 816