Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling

被引:25
作者
Valverde, Sergi [1 ]
Oliver, Arnau [1 ]
Roura, Eloy [1 ]
Pareto, Deborah [2 ]
Vilanova, Joan C. [3 ]
Ramio-Torrenta, Lluis [4 ]
Sastre-Garriga, Jaume [5 ]
Montalban, Xavier [5 ]
Rovira, Alex [2 ]
Llado, Xavier [1 ]
机构
[1] Univ Girona, Dept Comp Architecture & Technol, Girona, Spain
[2] Univ Girona, Spain Architecture & Technol, Vall dHebron Univ Hosp, Magnet Resonance Unit,Dept Radiol, Girona, Spain
[3] Girona Magnet Resonance Ctr, Girona, Spain
[4] Dr Josep Trueta Univ Hosp, Multiple Sclerosis & Neuroimmunol Unit, Madrid, Spain
[5] Vall dHebron Univ Hosp, Neurol Unit, Multiple Sclerosis Ctr Catalonia Cemcat, Madrid, Spain
关键词
Brain; Multiple sclerosis; MRI; Brain atrophy; Automated tissue segmentation; White matter lesions; Lesion filling; WHITE-MATTER LESIONS; INTENSITY NONUNIFORMITY; ATROPHY; GRAY; IMPACT; MRI; DISABILITY; ACCURATE; IMAGES; ROBUST;
D O I
10.1016/j.nicl.2015.10.012
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS) lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM) and white matter (WM) using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations. (C) 2015 The Authors. Published by Elsevier Inc.
引用
收藏
页码:640 / 647
页数:8
相关论文
共 50 条
  • [21] MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions
    Valcarcel, Alessandra M.
    Linn, Kristin A.
    Vandekar, Simon N.
    Satterthwaite, Theodore D.
    Muschelli, John
    Calabresi, Peter A.
    Pham, Dzung L.
    Martin, Melissa Lynne
    Shinohara, Russell T.
    JOURNAL OF NEUROIMAGING, 2018, 28 (04) : 389 - 398
  • [22] Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI
    Meier, Dominik S.
    Guttmann, Charles R. G.
    Tummala, Subhash
    Moscufo, Nicola
    Cavallari, Michele
    Tauhid, Shahamat
    Bakshi, Rohit
    Weiner, Howard L.
    JOURNAL OF NEUROIMAGING, 2018, 28 (01) : 36 - 47
  • [23] Brain structure segmentation in the presence of multiple sclerosis lesions
    Gonzalez-Villa, Sandra
    Oliver, Arnau
    Huo, Yuankai
    Llado, Xavier
    Landman, Bennett A.
    NEUROIMAGE-CLINICAL, 2019, 22
  • [24] Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
    Carass, Aaron
    Roy, Snehashis
    Jog, Amod
    Cuzzocreo, Jennifer L.
    Magrath, Elizabeth
    Gherman, Adrian
    Button, Julia
    Nguyen, James
    Prados, Ferran
    Sudre, Carole H.
    Cardoso, Manuel Jorge
    Cawley, Niamh
    Ciccarelli, Olga
    Wheeler-Kingshott, Claudia A. M.
    Ourselin, Sebastien
    Catanese, Laurence
    Deshpande, Hrishikesh
    Maurel, Pierre
    Commowick, Olivier
    Barillot, Christian
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    Vaidya, Suthirth
    Chunduru, Abhijith
    Muthuganapathy, Ramanathan
    Krishnamurthi, Ganapathy
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handeles, Heinz
    Iheme, Leonardo O.
    Unay, Devrim
    Jain, Saurabh
    Sima, Diana M.
    Smeets, Dirk
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Bazin, Pierre-Louis
    Calabresi, Peter A.
    Crainiceanu, Ciprian M.
    Ellingsen, Lotta M.
    Reich, Daniel S.
    Prince, Jerry L.
    Pham, Dzung L.
    NEUROIMAGE, 2017, 148 : 77 - 102
  • [25] BOOST: A supervised approach for multiple sclerosis lesion segmentation
    Cabezas, Mariano
    Oliver, Arnau
    Valverde, Sergi
    Beltran, Brigitte
    Freixenet, Jordi
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    JOURNAL OF NEUROSCIENCE METHODS, 2014, 237 : 108 - 117
  • [26] Atrophied Brain Lesion Volume: A New Imaging Biomarker in Multiple Sclerosis
    Dwyer, Michael G.
    Bergsland, Niels
    Ramasamy, Deepa P.
    Jakimovski, Dejan
    Weinstock-Guttman, Bianca
    Zivadinov, Robert
    JOURNAL OF NEUROIMAGING, 2018, 28 (05) : 490 - 495
  • [27] White matter lesion extension to automatic brain tissue segmentation on MRI
    de Boer, Renske
    Vrooman, Henri A.
    van der Lijn, Fedde
    Vernooij, Meike W.
    Ikram, M. Arfan
    van der Lugt, Aad
    Breteler, Monique M. B.
    Niessen, Wiro J.
    NEUROIMAGE, 2009, 45 (04) : 1151 - 1161
  • [28] The spatio-temporal relationship between white matter lesion volume changes and brain atrophy in clinically isolated syndrome and early multiple sclerosis
    Mattiesing, Rozemarijn M.
    Gentile, Giordano
    Brouwer, Iman
    van Schijndel, Ronald A.
    Uitdehaag, Bernard M. J.
    Twisk, Jos W. R.
    Kappos, Ludwig
    Freedman, Mark S.
    Comi, Giancarlo
    Jack, Dominic
    De Stefano, Nicola
    Barkhof, Frederik
    Battaglini, Marco
    Vrenken, Hugo
    NEUROIMAGE-CLINICAL, 2022, 36
  • [29] A Longitudinal Method for Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis
    Cerri, Stefano
    Hoopes, Andrew
    Greve, Douglas N.
    Muhlau, Mark
    Van Leemput, Koen
    MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 119 - 128
  • [30] Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks
    McKinley, Richard
    Wepfer, Rik
    Aschwanden, Fabian
    Grunder, Lorenz
    Muri, Raphaela
    Rummel, Christian
    Verma, Rajeev
    Weisstanner, Christian
    Reyes, Mauricio
    Salmen, Anke
    Chan, Andrew
    Wagner, Franca
    Wiest, Roland
    SCIENTIFIC REPORTS, 2021, 11 (01)