NEW EXACT SOLUTIONS OF SOME (2+1)-DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS VIA EXTENDED KUDRYASHOV METHOD

被引:27
作者
Hassan, M. M. [1 ]
Abdel-Razek, M. A. [2 ]
Shoreh, A. A. -H. [3 ]
机构
[1] Menia Univ, Fac Sci, Dept Math, El Minia, Egypt
[2] Assiut Univ, Fac Sci, Dept Math, Assiut, Egypt
[3] Al Azhar Univ, Fac Sci, Dept Math, Assiut, Egypt
关键词
extended Kudryashov method; Bernoulli equation; Riccati equation; exact solutions; TRAVELING-WAVE SOLUTIONS; KDV-BURGERS-EQUATION; TANH-FUNCTION METHOD; DE-VRIES EQUATION; DIFFERENTIAL-EQUATIONS; SIMPLEST EQUATION; PAINLEVE ANALYSIS; EXPANSION METHOD; DYNAMICS;
D O I
10.1016/S0034-4877(15)60006-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we propose an extended Kudryashov method to present new exact solutions of some nonlinear partial differential equations. The key idea of this method is to take full advantages of the Bernoulli and the Riccati equations involving parameters. We choose the (2+1)-dimensional Painleve integrable Burgers equations and the (2+1)-dimensional Kortewegde Vries-Burgers equation to illustrate the validity and advantages of the method. By means of this method many new and general exact solutions have been found.
引用
收藏
页码:347 / 358
页数:12
相关论文
共 30 条
[11]   Painleve analysis and exact solutions of two dimensional Korteweg-de Vries-Burgers equation [J].
Joy, MP .
PRAMANA-JOURNAL OF PHYSICS, 1996, 46 (01) :1-8
[12]   Modified Kudryashov method for finding exact solitary wave solutions of higher-order nonlinear equations [J].
Kabir, M. M. ;
Khajeh, A. ;
Aghdam, E. Abdi ;
Koma, A. Yousefi .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (02) :213-219
[13]  
KUDRYASHOV NA, 1988, PMM-J APPL MATH MEC+, V52, P361
[14]   ON TYPES OF NONLINEAR NONINTEGRABLE EQUATIONS WITH EXACT-SOLUTIONS [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1991, 155 (4-5) :269-275
[15]   Extended simplest equation method for nonlinear differential equations [J].
Kudryashov, Nikolai A. ;
Loguinova, Nadejda B. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) :396-402
[16]   One method for finding exact solutions of nonlinear differential equations [J].
Kudryashov, Nikolay A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2248-2253
[17]  
LI ZB, 1993, J PHYS A-MATH GEN, V26, P6027, DOI 10.1088/0305-4470/26/21/039
[18]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[19]   SOLITARY WAVE SOLUTIONS FOR SOME SYSTEMS OF COUPLED NONLINEAR EQUATIONS [J].
LU, BQ ;
PAN, ZL ;
QU, BZ ;
JIANG, XF .
PHYSICS LETTERS A, 1993, 180 (1-2) :61-64
[20]   AN EXACT SOLUTION TO 2-DIMENSIONAL KORTEWEG-DEVRIES-BURGERS EQUATION [J].
MA, WX .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (01) :L17-L20