NEW EXACT SOLUTIONS OF SOME (2+1)-DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS VIA EXTENDED KUDRYASHOV METHOD

被引:27
作者
Hassan, M. M. [1 ]
Abdel-Razek, M. A. [2 ]
Shoreh, A. A. -H. [3 ]
机构
[1] Menia Univ, Fac Sci, Dept Math, El Minia, Egypt
[2] Assiut Univ, Fac Sci, Dept Math, Assiut, Egypt
[3] Al Azhar Univ, Fac Sci, Dept Math, Assiut, Egypt
关键词
extended Kudryashov method; Bernoulli equation; Riccati equation; exact solutions; TRAVELING-WAVE SOLUTIONS; KDV-BURGERS-EQUATION; TANH-FUNCTION METHOD; DE-VRIES EQUATION; DIFFERENTIAL-EQUATIONS; SIMPLEST EQUATION; PAINLEVE ANALYSIS; EXPANSION METHOD; DYNAMICS;
D O I
10.1016/S0034-4877(15)60006-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we propose an extended Kudryashov method to present new exact solutions of some nonlinear partial differential equations. The key idea of this method is to take full advantages of the Bernoulli and the Riccati equations involving parameters. We choose the (2+1)-dimensional Painleve integrable Burgers equations and the (2+1)-dimensional Kortewegde Vries-Burgers equation to illustrate the validity and advantages of the method. By means of this method many new and general exact solutions have been found.
引用
收藏
页码:347 / 358
页数:12
相关论文
共 30 条
[1]  
Abdel-Razek M. A., 2011, STUD MATH SCI, V2, P88
[2]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[3]  
Cai Guoliang, 2008, INT J NONLINEAR SCI, V6, P185
[4]  
El-Sabbagh M. F., 2010, J EGYPT MATH SOC, V18, P129
[5]   Modified extended tanh-function method for solving nonlinear partial differential equations [J].
Elwakil, SA ;
El-labany, SK ;
Zahran, MA ;
Sabry, R .
PHYSICS LETTERS A, 2002, 299 (2-3) :179-188
[6]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[7]   Exact solution in terms of elliptic functions for the Burgers-Korteweg-de Vries equation [J].
Feng, ZS .
WAVE MOTION, 2003, 38 (02) :109-115
[8]  
Gepreel Khaled A., 2012, SCI RES ESSAYS, V7, P149
[9]   Exact solitary wave solutions for a generalized KdV-Burgers equation [J].
Hassan, MM .
CHAOS SOLITONS & FRACTALS, 2004, 19 (05) :1201-1206
[10]  
Hong KZ, 2003, COMMUN THEOR PHYS, V39, P393