On functional identities in prime rings with involution

被引:60
|
作者
Beidar, KI [1 ]
Martindale, WS
机构
[1] Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
[2] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
关键词
D O I
10.1006/jabr.1997.7285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a prime ring with involution *, let S be the symmetric elements, let K be the skew elements, let Q(ml) be the maximal left ring of quotients, x(1),..., x(m) noncommuting variables, and E-i, F-j, G(k), H-l: A(m-1) --> Q(ml), i, j, k, l = 1,2,..., m. We study functional identities of the form Sigma(i=1)(m) E(i)(i)x(i) + Sigma(j=1)(m)x(j)F(j)(j) + Sigma(k=1)(m)G(k)(k)x(k)(*) + Sigma(l=1)(m)x(l)(*)H(l)(l) = 0 for all x(1),..., x(m) is an element of A (where E-i(i) means E-i(x(1),..., (x) over cap(i),..., x(m)), etc.). In case S boolean OR K is not algebraic of bounded degree less than or equal to 2m definitive results are obtained. As an application k-commuting traces of symmetric n-additive maps of either S or K into Q(ml) are characterized. (C) 1998 Academic Press.
引用
收藏
页码:491 / 532
页数:42
相关论文
共 50 条
  • [31] LIE STRUCTURE IN PRIME RINGS WITH INVOLUTION
    ERICKSON, TS
    JOURNAL OF ALGEBRA, 1972, 21 (03) : 523 - &
  • [32] GENERALIZED IDENTITIES AND SEMIPRIME RINGS WITH INVOLUTION
    BEIDAR, CI
    MIKHALEV, AV
    SALAVOVA, C
    MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (01) : 37 - 62
  • [33] The ranges of additive maps in generalized functional identities on prime rings
    Yu, W
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (06) : 2897 - 2913
  • [34] GENERALIZED IDENTITIES AND SEMIPRIME RINGS WITH INVOLUTION
    BEIDAR, KI
    MIKHALEV, AV
    SALAVOVA, K
    RUSSIAN MATHEMATICAL SURVEYS, 1980, 35 (01) : 209 - 210
  • [35] Additive maps on prime and semiprime rings with involution
    Alahmadi, A.
    Alhazmi, H.
    Ali, S.
    Dar, N. A.
    Khan, A. N.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (03): : 1126 - 1133
  • [36] LIE ISOMORPHISMS IN PRIME-RINGS WITH INVOLUTION
    BEIDAR, KI
    MARTINDALE, WS
    MIKHALEV, AV
    JOURNAL OF ALGEBRA, 1994, 169 (01) : 304 - 327
  • [37] On generalized derivations and commutativity of prime rings with involution
    Huang, Shuliang
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (08) : 3521 - 3527
  • [38] Action of higher derivations on prime rings with involution
    Ali, Shakir
    Alali, Amal S.
    Varshney, Vaishali
    Rafiquee, Naira Noor
    GEORGIAN MATHEMATICAL JOURNAL, 2025,
  • [39] *-generalized differential identities of semiprime rings with involution
    Wei, Feng
    HOUSTON JOURNAL OF MATHEMATICS, 2006, 32 (03): : 665 - 681
  • [40] Lie isomorphisms in *-prime GPI rings with involution
    Blau, PS
    Martindale, WS
    TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (02): : 215 - 252