The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids

被引:455
作者
Lin, ST [1 ]
Blanco, M [1 ]
Goddard, WA [1 ]
机构
[1] CALTECH, Beckman Inst, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
关键词
D O I
10.1063/1.1624057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a general approach for determining the entropy and free energy of complex systems as a function of temperature and pressure. In this method the Fourier transform of the velocity autocorrelation function, obtained from a short (20 ps) molecular dynamics trajectory is used to obtain the vibrational density of states (DoS) which is then used to calculate the thermodynamic properties by applying quantum statistics assuming each mode is a harmonic oscillator. This approach is quite accurate for solids, but leads to significant errors for liquids where the DoS at zero frequency, S(0), remains finite. We show that this problem can be resolved for liquids by using a two phase model consisting of a solid phase for which the DoS goes to zero smoothly at zero frequency, as in a Debye solid; and a gas phase (highly fluidic), described as a gas of hard spheres. The gas phase component has a DoS that decreases monotonically from S(0) and can be characterized with two parameters: S(0) and 3N(g), the total number of gas phase modes [3N(g)-->0 for a solid and 3N(g)-->3(N-1) for temperatures and pressures for which the system is a gas]. To validate this two phase model for the thermodynamics of liquids, we applied it to pure Lennard-Jones systems for a range of reduced temperatures from 0.9 to 1.8 and reduced densities from 0.05 to 1.10. These conditions cover the gas, liquid, crystal, metastable, and unstable states in the phase diagram. Our results compare quite well with accurate Monte Carlo calculations of the phase diagram for classical Lennard-Jones particles throughout the entire phase diagram. Thus the two-phase thermodynamics approach provides an efficient means for extracting thermodynamic properties of liquids (and gases and solids). (C) 2003 American Institute of Physics.
引用
收藏
页码:11792 / 11805
页数:14
相关论文
共 15 条
[1]   On the calculation of entropy from covariance matrices of the atomic fluctuations [J].
Andricioaei, I ;
Karplus, M .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (14) :6289-6292
[2]  
[Anonymous], 1999, CERIUS2
[3]  
[Anonymous], 1976, STAT MECH
[4]   THERMODYNAMICS AND QUANTUM CORRECTIONS FROM MOLECULAR-DYNAMICS FOR LIQUID WATER [J].
BERENS, PH ;
MACKAY, DHJ ;
WHITE, GM ;
WILSON, KR .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (05) :2375-2389
[5]   THERMODYNAMIC PROPERTIES OF A RIGID-SPHERE FLUID [J].
CARNAHAN, NF ;
STARLING, KE .
JOURNAL OF CHEMICAL PHYSICS, 1970, 53 (02) :600-&
[6]  
Frenkel D., 2010, UNDERSTANDING MOL SI
[7]   THE LENNARD-JONES EQUATION OF STATE REVISITED [J].
JOHNSON, JK ;
ZOLLWEG, JA ;
GUBBINS, KE .
MOLECULAR PHYSICS, 1993, 78 (03) :591-618
[8]   ACCELERATION OF CONVERGENCE FOR LATTICE SUMS [J].
KARASAWA, N ;
GODDARD, WA .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (21) :7320-7327
[9]  
KARPLUS M, 1981, MACROMOLECULES, V14, P325, DOI 10.1021/ma50003a019
[10]   Self-diffusion in gases and liquids [J].
Ruckenstein, E ;
Liu, HQ .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (09) :3927-3936