A New Finite Time Convergence Condition for Super-Twisting Observer Based on Lyapunov Analysis

被引:25
作者
Mu, Chaoxu [1 ]
Sun, Changyin [2 ]
机构
[1] Tianjin Univ, Sch Elect & Automat Engn, Tianjin 300072, Peoples R China
[2] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
关键词
Super-twisting algorithm; finite-time convergence; Lyapunov analysis; observer; SLIDING-MODE CONTROL; NONLINEAR-SYSTEMS; ORDER; DIFFERENTIATION; STABILIZATION;
D O I
10.1002/asjc.952
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new convergence condition is proposed for the super-twisting sliding mode observer in this paper, where Lyapunov stability analysis is used as the main method to get the new convergence condition. The super-twisting sliding mode observer is designed to obtain unknown system states of the second order nonlinear system with bounded uncertainties and disturbances. By involving a quadratic Lyapunov function, the Lyapunov approach is applied to the stability analysis of the super-twisting observer, from which a new convergence condition is obtained to guarantee the finite time convergence of the observer. Simulation results of a pendulum and a rigid manipulator are included to demonstrate the effectiveness of the new convergence condition.
引用
收藏
页码:1050 / 1060
页数:11
相关论文
共 25 条
  • [1] [Anonymous], 1988, Mathematics and its Applications (Soviet Series), DOI DOI 10.1007/978-94-015-7793-9
  • [2] On multi-input chattering-free second-order sliding mode control
    Bartolini, G
    Ferrara, A
    Usai, E
    Utkin, VI
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (09) : 1711 - 1717
  • [3] Analysis of chattering in continuous sliding-mode controllers
    Boiko, I
    Fridman, L
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (09) : 1442 - 1446
  • [4] Davila A., 2009, P JOINT 48 IEEE C DE, P8045
  • [5] Observation and identification of mechanical systems via second order sliding modes
    Davila, J.
    Fridman, L.
    Poznyak, A.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2006, 79 (10) : 1251 - 1262
  • [6] Second-order sliding-mode observer for mechanical systems
    Davila, J
    Fridman, L
    Levant, A
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) : 1785 - 1789
  • [7] GLOBAL STABILIZATION OF PARTIALLY LINEAR COMPOSITE SYSTEMS USING HOMOGENEOUS METHOD
    Ding, Shihong
    Li, Shihua
    Li, Qi
    [J]. ASIAN JOURNAL OF CONTROL, 2011, 13 (06) : 1028 - 1034
  • [8] Feng Y, 2003, ASIAN J CONTROL, V5, P505, DOI 10.1111/j.1934-6093.2003.tb00168.x
  • [9] Non-singular terminal sliding mode control of rigid manipulators
    Feng, Y
    Yu, XH
    Man, ZH
    [J]. AUTOMATICA, 2002, 38 (12) : 2159 - 2167
  • [10] Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs
    Floquet, T.
    Barbot, J. P.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2007, 38 (10) : 803 - 815