Axiomatizing subcategories of Abelian categories

被引:9
作者
Kvamme, Sondre [1 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
关键词
Cluster tilting; Abelian category; Homological algebra; AUSLANDER; ALGEBRAS;
D O I
10.1016/j.jpaa.2021.106862
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate how to characterize subcategories of abelian categories in terms of intrinsic axioms. In particular, we find axioms which characterize generating cogenerating functorially finite subcategories, precluster tilting subcategories, and cluster tilting subcategories of abelian categories. As a consequence we prove that any d-abelian category is equivalent to a d-cluster tilting subcategory of an abelian category, without any assumption on the categories being projectively generated. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:27
相关论文
共 28 条
[1]  
[Anonymous], 1995, REPRESENTATION THEOR
[2]  
Auslander M., 1966, P C CAT ALG, P189
[3]  
Auslander M., 1971, QUEEN MARY COLL NOTE
[4]  
Dyckerhoff T., 2019, ARXIV191111719
[5]   Simplicial structures in higher Auslander-Reiten theory [J].
Dyckerhoff, Tobias ;
Jasso, Gustavo ;
Walde, Tashi .
ADVANCES IN MATHEMATICS, 2019, 355
[6]  
Ebrahimi Ramin, 2020, ARXIV200606472
[7]   d-Auslander-Reiten sequences in subcategories [J].
Fedele, Francesca .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (02) :342-373
[8]   Auslander-Reiten (d+2)-angles in subcategories and a (d+2)-angulated generalisation of a theorem by Bruning [J].
Fedele, Francesca .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (08) :3554-3580
[9]  
FREYD P, 1966, P C CAT ALG LA JOLL, P95
[10]  
GABRIEL P, 1962, B SOC MATH FRANCE, V90, P323