Ricci Curvature, Isoperimetry and a Non-additive Entropy

被引:10
作者
Kalogeropoulos, Nikos [1 ]
机构
[1] Weill Cornell Med Coll Qatar, Educ City, Doha, Qatar
来源
ENTROPY | 2015年 / 17卷 / 03期
关键词
METRIC-MEASURE-SPACES; GENERALIZED THERMOSTATISTICS; ESSENTIAL DISCRETENESS; NONLOGARITHMIC ENTROPY; POLAR FACTORIZATION; GEOMETRY; TRANSPORTATION; REARRANGEMENT; INEQUALITY; EQUATIONS;
D O I
10.3390/e17031278
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Searching for the dynamical foundations of Havrda-Charvat/Daroczy/Cressie-Read/Tsallis non-additive entropy, we come across a covariant quantity called, alternatively, a generalized Ricci curvature, an N-Ricci curvature or a Bakry-emery-Ricci curvature in the configuration/phase space of a system. We explore some of the implications of this tensor and its associated curvature and present a connection with the non-additive entropy under investigation. We present an isoperimetric interpretation of the non-extensive parameter and comment on further features of the system that can be probed through this tensor.
引用
收藏
页码:1278 / 1308
页数:31
相关论文
共 102 条