Fractional Schrodinger equation; solvability and connection with classical Schrodinger equation

被引:17
作者
Bezerra, Flank D. M. [1 ,2 ]
Carvalho, Alexandre N. [3 ]
Dlotko, Tomasz [4 ]
Nascimento, Marcelo J. D. [5 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[3] Univ Sao Paulo, Dept Matemat, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[4] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
[5] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Fractional Schrodinger equation; Subcritical nonlinearity; Fractional powers of operators; GLOBAL ATTRACTOR; CAUCHY-PROBLEM; POWERS;
D O I
10.1016/j.jmaa.2017.08.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Dirichlet boundary problem for semilinear fractional Schrodinger equation with subcritical nonlinear term. Local and global in time solvability and regularity properties of solutions are discussed. But our main task is to describe the connections of the fractional equation with the classical nonlinear Schrodinger equation, including convergence of the linear semigroups and continuity of the nonlinear semigroups when the fractional exponent a approaches 1. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:336 / 360
页数:25
相关论文
共 25 条
[1]  
Amann H., 1995, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory,, V89
[2]  
[Anonymous], 2012, Infinite-dimensional dynamical systems in mechanics and physics, DOI 10.1007/978-1-4684-0313-8
[3]  
[Anonymous], 1981, Lecture Notes in Mathematics, DOI [10.1007/BFb0089647, DOI 10.1007/BFB0089647]
[4]   Parabolic problems with nonlinear boundary conditions and critical nonlinearities [J].
Arrieta, JM ;
Carvalho, AN ;
Rodríguez-Bernal, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) :376-406
[5]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[6]   THE CAUCHY-PROBLEM FOR THE NONLINEAR SCHRODINGER-EQUATION IN H-1 [J].
CAZENAVE, T ;
WEISSLER, FB .
MANUSCRIPTA MATHEMATICA, 1988, 61 (04) :477-494
[7]  
Cholewa J., 2000, Global attractors in abstract parabolic problems
[8]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[9]  
Dlotko T., 2017, APPL MATH OPTIM
[10]   The generalized Korteweg-de Vries-Burgers equation in H2(R) [J].
Dlotko, Tomasz .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (03) :721-732