Fractional q-Difference Inclusions in Banach Spaces

被引:5
作者
Alqahtani, Badr [1 ]
Abbas, Said [2 ]
Benchohra, Mouffak [1 ,3 ]
Alzaid, Sara Salem [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] Tahar Moulay Univ Saida, Dept Math, POB 138, En Nasr 20000, Saida, Algeria
[3] Djillali Liabes Univ Sidi Bel Abbes, Math Lab, POB 89, Sidi Bel Abbes 22000, Algeria
关键词
fractional q-difference inclusion; measure of noncompactness; solution; fixed point; INTEGRALS;
D O I
10.3390/math8010091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a class of Caputo fractional q-difference inclusions in Banach spaces. We obtain some existence results by using the set-valued analysis, the measure of noncompactness, and the fixed point theory (Darbo and Monch's fixed point theorems). Finally we give an illustrative example in the last section. We initiate the study of fractional q-difference inclusions on infinite dimensional Banach spaces.
引用
收藏
页数:12
相关论文
共 41 条
[21]   Existence Theory for a Fractional q-Integro-Difference Equation with q-Integral Boundary Conditions of Different Orders [J].
Etemad, Sina ;
Ntouyas, Sotiris K. ;
Ahmad, Bashir .
MATHEMATICS, 2019, 7 (08)
[23]  
Hu S., 1997, Theory, VI
[24]  
Kac V., 2002, Quantum Calculus, DOI [10.1007/978-1-4613-0071-7, DOI 10.1007/978-1-4613-0071-7]
[25]  
Kilbas A. A., 2006, Theory and applications of fractional differential equations, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[26]  
Kilbas A.A., 2001, J KOREAN MATH SOC, V38, P1191
[27]  
Losta A., 1965, B ACAD POL SCI SMAP, V13, P781
[28]  
Ntouyas S.K., 2014, DISCUSS MATH DIFFER, V34, P41, DOI [10.7151/dmdico.1157, DOI 10.7151/DMDICO.1157]
[29]   Fixed point theorems for set-valued maps and existence principles for integral inclusions [J].
O'Regan, D ;
Precup, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 245 (02) :594-612
[30]  
Rajkovic P.M., 2007, Frac. Calc. Appl. Anal, V10, P359