Majorana states in prismatic core-shell nanowires

被引:24
作者
Manolescu, Andrei [1 ]
Sitek, Anna [1 ,2 ]
Osca, Javier [3 ]
Serra, Llorenc [3 ,4 ]
Gudmundsson, Vidar [5 ]
Stanescu, Tudor Dan [6 ]
机构
[1] Reykjavik Univ, Sch Sci & Engn, Menntavegur 1, IS-101 Reykjavik, Iceland
[2] Wroclaw Univ Sci & Technol, Fac Fundamental Problems Technol, Dept Theoret Phys, PL-50370 Wroclaw, Poland
[3] CSIC UIB, Inst Interdisciplinary Phys & Complex Syst, E-07122 Palma De Mallorca, Spain
[4] Univ Balearic Isl, Dept Phys, E-07122 Palma De Mallorca, Spain
[5] Univ Iceland, Sci Inst, Dunhaga 3, IS-107 Reykjavik, Iceland
[6] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA
基金
美国国家科学基金会;
关键词
SEMICONDUCTOR-SUPERCONDUCTOR NANOWIRES; QUANTUM COMPUTATION; FERMIONS; ANYONS;
D O I
10.1103/PhysRevB.96.125435
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider core-shell nanowires with conductive shell and insulating core and with polygonal cross section. We investigate the implications of this geometry onMajorana states expected in the presence of proximity-induced superconductivity and an externalmagnetic field. A typical prismatic nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The low-energy states are localized at the corners of the cross section, i. e., along the prism edges, and are separated by a gap from higher energy states localized on the sides. The corner localization depends on the details of the shell geometry, i. e., thickness, diameter, and sharpness of the corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric field across the shell.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Exponential protection of zero modes in Majorana islands
    Albrecht, S. M.
    Higginbotham, A. P.
    Madsen, M.
    Kuemmeth, F.
    Jespersen, T. S.
    Nygard, J.
    Krogstrup, P.
    Marcus, C. M.
    [J]. NATURE, 2016, 531 (7593) : 206 - +
  • [2] New directions in the pursuit of Majorana fermions in solid state systems
    Alicea, Jason
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (07)
  • [3] Search for Majorana Fermions in Superconductors
    Beenakker, C. W. J.
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 4, 2013, 4 : 113 - 136
  • [4] Electron and hole gas in modulation-doped GaAs/Al1-xGaxAs radial heterojunctions
    Bertoni, Andrea
    Royo, Miquel
    Mahawish, Farah
    Goldoni, Guido
    [J]. PHYSICAL REVIEW B, 2011, 84 (20)
  • [5] Realization of nanoscaled tubular conductors by means of GaAs/InAs core/shell nanowires
    Bloemers, C.
    Rieger, T.
    Zellekens, P.
    Haas, F.
    Lepsa, M. I.
    Hardtdegen, H.
    Guel, Oe
    Demarina, N.
    Gruetzmacher, D.
    Lueth, H.
    Schaepers, Th
    [J]. NANOTECHNOLOGY, 2013, 24 (03)
  • [6] Spin precession and modulation in ballistic cylindrical nanowires due to the Rashba effect
    Bringer, A.
    Schaepers, Th
    [J]. PHYSICAL REVIEW B, 2011, 83 (11)
  • [7] Chang W, 2015, NAT NANOTECHNOL, V10, P232, DOI [10.1038/nnano.2014.306, 10.1038/NNANO.2014.306]
  • [8] Experimental phase diagram of zero-bias conductance peaks in superconductor/semiconductor nanowire devices
    Chen, Jun
    Yu, Peng
    Stenger, John
    Hocevar, Moira
    Car, Diana
    Plissard, Sebastien R.
    Bakkers, Erik P. A. M.
    Stanescu, Tudor D.
    Frolov, Sergey M.
    [J]. SCIENCE ADVANCES, 2017, 3 (09):
  • [9] Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover
    Churchill, H. O. H.
    Fatemi, V.
    Grove-Rasmussen, K.
    Deng, M. T.
    Caroff, P.
    Xu, H. Q.
    Marcus, C. M.
    [J]. PHYSICAL REVIEW B, 2013, 87 (24):
  • [10] Das A, 2012, NAT PHYS, V8, P887, DOI [10.1038/nphys2479, 10.1038/NPHYS2479]