COMPUTING RATIONAL POINTS IN CONVEX SEMIALGEBRAIC SETS AND SUM OF SQUARES DECOMPOSITIONS

被引:17
作者
El Din, Mohab Safey [1 ]
Zhi, Lihong [2 ]
机构
[1] Univ Paris 06, Paris Rocquencourt Ctr, UMR 7606, SALSA Project,CNRS,INRIA,UPMC,LIP6, F-75005 Paris, France
[2] Acad Mil Med Sci, Key Lab Math Mechanizat, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
rational sum of squares; semidefinite programming; convex; complexity; COMPLEXITY; OPTIMIZATION; SEMIDEFINITE; COEFFICIENTS; POLYNOMIALS;
D O I
10.1137/090772459
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P = {h(1), ... , h(s)} subset of Z[Y-1, ... , Y-k], D >= deg(h(i)) for 1 <= i <= s, sigma bounding the bit length of the coefficients of the h(i)'s, and let Phi be a quantifier-free P-formula defining a convex semialgebraic set. We design an algorithm returning a rational point in S if and only if S boolean AND Q not equal empty set. It requires sigma(O)(1) D-O(k(3)) bit operations. If a rational point is outputted, its coordinates have bit length dominated by sigma D-O(k(3)). Using this result, we obtain a procedure for deciding whether a polynomial f is an element of Z[X-1, ... , X-n] is a sum of squares of polynomials in Q[X-1, ... , X-n]. Denote by d the degree of f, tau the maximum bit length of the coefficients in f, D = ((n+d) (n)), and k <= D(D + 1) - ((n+2d) (n)). This procedure requires tau(O)(1) D-O(k(3)) bit operations, and the coefficients of the outputted polynomials have bit length dominated by tau D-O(k(3)).
引用
收藏
页码:2876 / 2889
页数:14
相关论文
共 21 条
  • [1] On the combinatorial and algebraic complexity of quantifier elimination
    Basu, S
    Pollack, R
    Roy, MF
    [J]. JOURNAL OF THE ACM, 1996, 43 (06) : 1002 - 1045
  • [2] BASU S., 2006, Algorithms Comput. Math., V10
  • [3] Bochnak J., 2013, Ergeb. Math. Grenzgeb.
  • [4] Choi M-D., 1995, P S PURE MATH, V58, P103
  • [5] Complexity of integer quasiconvex polynomial optimization
    Heinz, S
    [J]. JOURNAL OF COMPLEXITY, 2005, 21 (04) : 543 - 556
  • [6] Hillar CJ, 2009, P AM MATH SOC, V137, P921
  • [7] KALTOFEN E, J SYMBOLIC IN PRESS
  • [8] KALTOFEN E, 2008, P 21 INT S SYMB ALG, P155, DOI [10.1145/1390768.1390792, DOI 10.1145/1390768.1390792]
  • [9] KALTOFEN EL, 2009, COMMUNICATION
  • [10] Computing integral points in convex semi-algebraic sets
    Khachiyan, L
    Porkolab, L
    [J]. 38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, : 162 - 171