RNA splicing programs define tissue compartments and cell types at single-cell resolution

被引:1
作者
Olivieri, Julia Eve [1 ,2 ,3 ]
Dehghannasiri, Roozbeh [2 ,3 ]
Wang, Peter L. [3 ]
Jang, SoRi [3 ]
de Morree, Antoine [4 ]
Tan, Serena Y. [5 ]
Ming, Jingsi [6 ,7 ]
Wu, Angela Ruohao [8 ]
Consortium, Tabula Sapiens
Quake, Stephen R. [9 ,10 ]
Krasnow, Mark A. [3 ]
Salzman, Julia [2 ,3 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Neurol & Neurol Sci, Sch Med, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Pathol, Med Ctr, Stanford, CA 94305 USA
[6] East China Normal Univ, Acad Stat & Interdisciplinary Sci, Fac Econ & Management, Shanghai, Peoples R China
[7] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
[8] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
[9] Chan Zuckerberg Biohub, San Francisco, CA USA
[10] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
来源
ELIFE | 2021年 / 10卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
scRNA-seq; splicing; statistics; computational biology; RNA; Human; Mouse; Mouse lemur; TRANSCRIPTOME; MECHANISMS; DYNAMICS; GENES;
D O I
10.7554/eLife.70692; 10.7554/eLife.70692.sa1; 10.7554/eLife.70692.sa2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach, to detect cell-type-specific splicing in >110K cells from 12 human tissues. Using 10X Chromium data for discovery, 9.1% of genes with computable SpliZ scores are cell-type-specifically spliced, including ubiquitously expressed genes MYL6 and RPS24. These results are validated with RNA FISH, single-cell PCR, and Smart-seq2. SpliZ analysis reveals 170 genes with regulated splicing during human spermatogenesis, including examples conserved in mouse and mouse lemur. The SpliZ allows model-based identification of subpopulations indistinguishable based on gene expression, illustrated by subpopulation-specific splicing of classical monocytes involving an ultraconserved exon in SAT1. Together, this analysis of differential splicing across multiple organs establishes that splicing is regulated cell-type-specifically.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Thermogenetic neurostimulation with single-cell resolution
    Ermakova, Yulia G.
    Lanin, Aleksandr A.
    Fedotov, Ilya V.
    Roshchin, Matvey
    Kelmanson, Ilya V.
    Kulik, Dmitry
    Bogdanova, Yulia A.
    Shokhina, Arina G.
    Bilan, Dmitry S.
    Staroverov, Dmitry B.
    Balaban, Pavel M.
    Fedotov, Andrei B.
    Sidorov-Biryukov, Dmitry A.
    Nikitin, Evgeny S.
    Zheltikov, Aleksei M.
    Belousov, Vsevolod V.
    NATURE COMMUNICATIONS, 2017, 8
  • [42] sc-ImmuCC: hierarchical annotation for immune cell types in single-cell RNA-seq
    Jiang, Ying
    Chen, Ziyi
    Han, Na
    Shang, Jingzhe
    Wu, Aiping
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [43] Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads
    De Rop, Florian, V
    Ismail, Joy N.
    Bravo Gonzalez-Blas, Carmen
    Hulselmans, Gert J.
    Flerin, Christopher Campbell
    Janssens, Jasper
    Theunis, Koen
    Christiaens, Valerie M.
    Wouters, Jasper
    Marcassa, Gabriele
    de Wit, Joris
    Poovathingal, Suresh
    Aerts, Stein
    ELIFE, 2022, 11
  • [44] ReadZS detects cell type-specific and developmentally regulated RNA processing programs in single-cell RNA-seq
    Elisabeth Meyer
    Kaitlin Chaung
    Roozbeh Dehghannasiri
    Julia Salzman
    Genome Biology, 23
  • [45] scEnhancer: a single-cell enhancer resource with annotation across hundreds of tissue/cell types in three species
    Gao, Tianshun
    Zheng, Zilong
    Pan, Yihang
    Zhu, Chengming
    Wei, Fuxin
    Yuan, Jinqiu
    Sun, Rui
    Fang, Shuo
    Wang, Nan
    Zhou, Yang
    Qian, Jiang
    NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) : D371 - D379
  • [46] ReadZS detects cell type-specific and developmentally regulated RNA processing programs in single-cell RNA-seq
    Meyer, Elisabeth
    Chaung, Kaitlin
    Dehghannasiri, Roozbeh
    Salzman, Julia
    GENOME BIOLOGY, 2022, 23 (01)
  • [47] Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing
    Tang, Qin
    Iyer, Sowmya
    Lobbardi, Riadh
    Moore, John C.
    Chen, Huidong
    Lareau, Caleb
    Hebert, Christine
    Shaw, McKenzie L.
    Neftel, Cyril
    Suva, Mario L.
    Ceol, Craig J.
    Bernards, Andre
    Aryee, Martin
    Pinello, Luca
    Drummond, Iain A.
    Langenau, David M.
    JOURNAL OF EXPERIMENTAL MEDICINE, 2017, 214 (10) : 2875 - 2887
  • [48] Genomic sequences and RNA-binding proteins predict RNA splicing efficiency in various single-cell contexts
    Hou, Ruiyan
    Huang, Yuanghua
    BIOINFORMATICS, 2022, 38 (12) : 3231 - 3237
  • [49] Single-cell RNA sequencing reveals the critical role of alternative splicing in cattle testicular spermatagonia
    Wang, Xiuge
    Yang, Chunhong
    Wei, Xiaochao
    Zhang, Yaran
    Xiao, Yao
    Wang, Jinpeng
    Jiang, Qiang
    Ju, Zhihua
    Gao, Yaping
    Li, Yanqin
    Gao, Yundong
    Huang, Jinming
    BIOLOGY DIRECT, 2024, 19 (01)
  • [50] Complexity and graded regulation of neuronal cell-type-specific alternative splicing revealed by single-cell RNA sequencing
    Feng, Huijuan
    Moakley, Daniel F.
    Chen, Shuonan
    McKenzie, Melissa G.
    Menon, Vilas
    Zhang, Chaolin
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (10)