RNA splicing programs define tissue compartments and cell types at single-cell resolution

被引:1
|
作者
Olivieri, Julia Eve [1 ,2 ,3 ]
Dehghannasiri, Roozbeh [2 ,3 ]
Wang, Peter L. [3 ]
Jang, SoRi [3 ]
de Morree, Antoine [4 ]
Tan, Serena Y. [5 ]
Ming, Jingsi [6 ,7 ]
Wu, Angela Ruohao [8 ]
Consortium, Tabula Sapiens
Quake, Stephen R. [9 ,10 ]
Krasnow, Mark A. [3 ]
Salzman, Julia [2 ,3 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Neurol & Neurol Sci, Sch Med, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Pathol, Med Ctr, Stanford, CA 94305 USA
[6] East China Normal Univ, Acad Stat & Interdisciplinary Sci, Fac Econ & Management, Shanghai, Peoples R China
[7] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
[8] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
[9] Chan Zuckerberg Biohub, San Francisco, CA USA
[10] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
来源
ELIFE | 2021年 / 10卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
scRNA-seq; splicing; statistics; computational biology; RNA; Human; Mouse; Mouse lemur; TRANSCRIPTOME; MECHANISMS; DYNAMICS; GENES;
D O I
10.7554/eLife.70692; 10.7554/eLife.70692.sa1; 10.7554/eLife.70692.sa2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach, to detect cell-type-specific splicing in >110K cells from 12 human tissues. Using 10X Chromium data for discovery, 9.1% of genes with computable SpliZ scores are cell-type-specifically spliced, including ubiquitously expressed genes MYL6 and RPS24. These results are validated with RNA FISH, single-cell PCR, and Smart-seq2. SpliZ analysis reveals 170 genes with regulated splicing during human spermatogenesis, including examples conserved in mouse and mouse lemur. The SpliZ allows model-based identification of subpopulations indistinguishable based on gene expression, illustrated by subpopulation-specific splicing of classical monocytes involving an ultraconserved exon in SAT1. Together, this analysis of differential splicing across multiple organs establishes that splicing is regulated cell-type-specifically.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Single-Cell RNA Sequencing: Unraveling the Brain One Cell at a Time
    Ofengeim, Dimitry
    Giagtzoglou, Nikolaos
    Huh, Dann
    Zou, Chengyu
    Yuan, Junying
    TRENDS IN MOLECULAR MEDICINE, 2017, 23 (06) : 563 - 576
  • [22] From Tissues to Cell Types and Back: Single-Cell Gene Expression Analysis of Tissue Architecture
    Chen, Xi
    Teichmann, Sarah A.
    Meyer, Kerstin B.
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 1, 2018, 1 : 29 - 51
  • [23] Tissue dissociation for single-cell and single-nuclei RNA sequencing for low amounts of input material
    Wiegleb, Gordon
    Reinhardt, Susanne
    Dahl, Andreas
    Posnien, Nico
    FRONTIERS IN ZOOLOGY, 2022, 19 (01)
  • [24] Evaluate the developmental competence of human 8-cell embryos by single-cell RNA sequencing
    Wang, Weizhou
    Zhao, Mengmeng
    Zuo, Haiyang
    Zhang, Jingyao
    Liu, Bin
    Chen, Fu
    Ji, Pengyun
    Liu, Guoshi
    Gao, Shuai
    Shang, Wei
    Zhang, Lu
    REPRODUCTION AND FERTILITY, 2023, 4 (02):
  • [25] VALERIE: Visual-based inspection of alternative splicing events at single-cell resolution
    Wen, Wei Xiong
    Mead, Adam J.
    Thongjuea, Supat
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)
  • [26] Defining cell types and states with single-cell genomics
    Trapnell, Cole
    GENOME RESEARCH, 2015, 25 (10) : 1491 - 1498
  • [27] A limited set of transcriptional programs define major cell types
    Breschi, Alessandra
    Munoz-Aguirre, Manuel
    Wucher, Valentin
    Davis, Carrie A.
    Garrido-Martin, Diego
    Djebali, Sarah
    Gillis, Jesse
    Pervouchine, Dmitri D.
    Vlasova, Anna
    Dobin, Alexander
    Zaleski, Chris
    Drenkow, Jorg
    Danyko, Cassidy
    Scavelli, Alexandra
    Reverter, Ferran
    Snyder, Michael P.
    Gingeras, Thomas R.
    Guigo, Roderic
    GENOME RESEARCH, 2020, 30 (07) : 1047 - 1059
  • [28] The changing mouse embryo transcriptome at whole tissue and single-cell resolution
    He, Peng
    Williams, Brian A.
    Trout, Diane
    Marinov, Georgi K.
    Amrhein, Henry
    Berghella, Libera
    Goh, Say-Tar
    Plajzer-Frick, Ingrid
    Afzal, Veena
    Pennacchio, Len A.
    Dickel, Diane E.
    Visel, Axel
    Ren, Bing
    Hardison, Ross C.
    Zhang, Yu
    Wold, Barbara J.
    NATURE, 2020, 583 (7818) : 760 - +
  • [29] Comparison of cell type distribution between single-cell and single-nucleus RNA sequencing: enrichment of adherent cell types in single-nucleus RNA sequencing
    Oh, Jin-Mi
    An, Minae
    Son, Dae-Soon
    Choi, Jinhyuk
    Cho, Yong Beom
    Yoo, Chang Eun
    Park, Woong-Yang
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2022, 54 (12) : 2128 - 2134
  • [30] The new technologies of high-throughput single-cell RNA sequencing
    Vodiasova, E. A.
    Chelebieva, E. S.
    Kuleshova, O. N.
    VAVILOVSKII ZHURNAL GENETIKI I SELEKTSII, 2019, 23 (05): : 508 - 518