RNA splicing programs define tissue compartments and cell types at single-cell resolution

被引:1
|
作者
Olivieri, Julia Eve [1 ,2 ,3 ]
Dehghannasiri, Roozbeh [2 ,3 ]
Wang, Peter L. [3 ]
Jang, SoRi [3 ]
de Morree, Antoine [4 ]
Tan, Serena Y. [5 ]
Ming, Jingsi [6 ,7 ]
Wu, Angela Ruohao [8 ]
Consortium, Tabula Sapiens
Quake, Stephen R. [9 ,10 ]
Krasnow, Mark A. [3 ]
Salzman, Julia [2 ,3 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Neurol & Neurol Sci, Sch Med, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Pathol, Med Ctr, Stanford, CA 94305 USA
[6] East China Normal Univ, Acad Stat & Interdisciplinary Sci, Fac Econ & Management, Shanghai, Peoples R China
[7] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
[8] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
[9] Chan Zuckerberg Biohub, San Francisco, CA USA
[10] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
来源
ELIFE | 2021年 / 10卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
scRNA-seq; splicing; statistics; computational biology; RNA; Human; Mouse; Mouse lemur; TRANSCRIPTOME; MECHANISMS; DYNAMICS; GENES;
D O I
10.7554/eLife.70692; 10.7554/eLife.70692.sa1; 10.7554/eLife.70692.sa2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach, to detect cell-type-specific splicing in >110K cells from 12 human tissues. Using 10X Chromium data for discovery, 9.1% of genes with computable SpliZ scores are cell-type-specifically spliced, including ubiquitously expressed genes MYL6 and RPS24. These results are validated with RNA FISH, single-cell PCR, and Smart-seq2. SpliZ analysis reveals 170 genes with regulated splicing during human spermatogenesis, including examples conserved in mouse and mouse lemur. The SpliZ allows model-based identification of subpopulations indistinguishable based on gene expression, illustrated by subpopulation-specific splicing of classical monocytes involving an ultraconserved exon in SAT1. Together, this analysis of differential splicing across multiple organs establishes that splicing is regulated cell-type-specifically.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Transcriptional Programs Define Intratumoral Heterogeneity of Ewing Sarcoma at Single-Cell Resolution
    Aynaud, Marie-Ming
    Mirabeau, Olivier
    Gruel, Nadege
    Grossetete, Sandrine
    Boeva, Valentina
    Durand, Simon
    Surdez, Didier
    Saulnier, Olivier
    Zaidi, Sakina
    Gribkova, Svetlana
    Fouche, Aziz
    Kairov, Ulykbek
    Raynal, Virginie
    Tirode, Franck
    Gruenewald, Thomas G. P.
    Bohec, Mylene
    Baulande, Sylvain
    Janoueix-Lerosey, Isabelle
    Vert, Jean-Philippe
    Barillot, Emmanuel
    Delattre, Olivier
    Zinovyev, Andrei
    CELL REPORTS, 2020, 30 (06): : 1767 - +
  • [2] Single-cell resolution reveals the cell types and transcriptomic landscape of the ovary in mandarin fish (Siniperca chuatsi)
    Zhang, Siling
    Ren, Jie
    Jiang, Shanwen
    Miao, Xiaomin
    Tao, Yixi
    Wu, Ronghua
    Li, Yun
    Xu, Hao
    AQUACULTURE, 2025, 604
  • [3] Approaches for single-cell RNA sequencing across tissues and cell types
    Sant, Pooja
    Rippe, Karsten
    Mallm, Jan-Philipp
    TRANSCRIPTION-AUSTIN, 2023, 14 (3-5): : 127 - 145
  • [4] Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution
    Cowan, Cameron S.
    Renner, Magdalena
    De Gennaro, Martina
    Gross-Scherf, Brigitte
    Goldblum, David
    Hou, Yanyan
    Munz, Martin
    Rodrigues, Tiago M.
    Krol, Jacek
    Szikra, Tamas
    Cuttat, Rachel
    Waldt, Annick
    Papasaikas, Panagiotis
    Diggelmann, Roland
    Patino-Alvarez, Claudia P.
    Galliker, Patricia
    Spirig, Stefan E.
    Pavlinic, Dinko
    Gerber-Hollbach, Nadine
    Schuierer, Sven
    Srdanovic, Aldin
    Balogh, Marton
    Panero, Riccardo
    Kusnyerik, Akos
    Szabo, Arnold
    Stadler, Michael B.
    Orgul, Selim
    Picelli, Simone
    Hasler, Pascal W.
    Hierlemann, Andreas
    Scholl, Hendrik P. N.
    Roma, Guglielmo
    Nigsch, Florian
    Roska, Botond
    CELL, 2020, 182 (06) : 1623 - +
  • [5] Prospects of Identifying Alternative Splicing Events from Single-Cell RNA Sequencing Data
    Wang, Jiacheng
    Yuan, Lei
    CURRENT BIOINFORMATICS, 2024, 19 (09) : 845 - 850
  • [6] RNA Splicing Analysis: From In Vitro Testing to Single-Cell Imaging
    Ren, Xiaojun
    Zhang, Kaixiang
    Deng, Ruijie
    Li, Jinghong
    CHEM, 2019, 5 (10): : 2571 - 2592
  • [7] Regulation of endocrine cell alternative splicing revealed by single-cell RNA sequencing in type 2 diabetes pathogenesis
    Wang, Jin
    Wen, Shiyi
    Chen, Minqi
    Xie, Jiayi
    Lou, Xinhua
    Zhao, Haihan
    Chen, Yanming
    Zhao, Meng
    Shi, Guojun
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [8] Single-Cell RNA Sequencing in Organ and Cell Transplantation
    Abedini-Nassab, Roozbeh
    Taheri, Fatemeh
    Emamgholizadeh, Ali
    Naderi-Manesh, Hossein
    BIOSENSORS-BASEL, 2024, 14 (04):
  • [9] From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing
    Marinov, Georgi K.
    Williams, Brian A.
    McCue, Ken
    Schroth, Gary P.
    Gertz, Jason
    Myers, Richard M.
    Wold, Barbara J.
    GENOME RESEARCH, 2014, 24 (03) : 496 - 510
  • [10] The SpliZ generalizes 'percent spliced in' to reveal regulated splicing at single-cell resolution
    Olivieri, Julia Eve
    Dehghannasiri, Roozbeh
    Salzman, Julia
    NATURE METHODS, 2022, 19 (03) : 307 - +