Select Applications of Bayesian Data Analysis and Machine Learning to Flow Problems

被引:3
作者
Seryo, Naoki [1 ]
Molina, John J. [1 ]
Taniguchi, Takashi [1 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Chem Engn, Nishikyo Ku, Kyoto 6158510, Japan
基金
日本学术振兴会;
关键词
Bayesian data analysis; Machine-learning; Constitutive equations; GAUSSIAN-PROCESSES; PHYSICS; EFFICIENT;
D O I
10.1678/rheology.49.97
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This review focuses on the use of Bayesian Data Analysis and Machine Learning Techniques to study and analyze flow problems typical to polymer melt systems. We present a brief summary of Bayesian probability theory, and show how it can be used to solve the parameter estimation and model selection problems, for cases when the model(s) are known. For the more complex non-parametric regression problem, in which the functional form of the model is not known, we show how Machine-Learning (through Gaussian Processes) can be used to learn arbitrary functions from data. In particular, we show examples for solving steady-state flow problem as well as learning the constitutive relations of polymer flows with memory.
引用
收藏
页码:97 / 113
页数:17
相关论文
共 37 条
[1]  
[Anonymous], 2006, Data_analysis:_a_Bayesian_tutorial
[2]  
Baldock RJN., 2017, Classical Statistical Mechanics with Nested Sampling
[3]   Determining pressure-temperature phase diagrams of materials [J].
Baldock, Robert J. N. ;
Partay, Livia B. ;
Bartok, Albert P. ;
Payne, Michael C. ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2016, 93 (17)
[4]   Nested Transition Path Sampling [J].
Bolhuis, Peter G. ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2018, 120 (25)
[5]  
Bradbury James, 2018, JAX: composable transformations of python+ numpy programs
[6]   MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics [J].
Feroz, F. ;
Hobson, M. P. ;
Bridges, M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 398 (04) :1601-1614
[7]   Exploring Multi-Modal Distributions with Nested Sampling [J].
Feroz, Farhan ;
Skilling, John .
BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2013, 1553 :106-113
[8]  
Ghosal S, 2017, CA ST PR MA, V44
[9]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[10]   Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation [J].
Higson, Edward ;
Handley, Will ;
Hobson, Michael ;
Lasenby, Anthony .
STATISTICS AND COMPUTING, 2019, 29 (05) :891-913