FINITE DIMENSIONAL GLOBAL ATTRACTOR FOR A CLASS OF TWO-COUPLED NONLINEAR FRACTIONAL SCHRO spacing diaeresis DINGER EQUATIONS

被引:0
作者
Alouini, Brahim [1 ,2 ]
机构
[1] Univ Monastir, Fac Sci, Res Lab Anal Probabil & Fractals, Monastir, Tunisia
[2] IPEI Monastir, Ibn El Jazzar St, Monastir 5019, Tunisia
关键词
Schrodinger equation; asymptotic behavior; global attractor; fractal dimension; SCHRODINGER-EQUATIONS; EVOLUTION-EQUATIONS; BEHAVIOR; SOLITONS; SYSTEM;
D O I
10.3934/eect.2021013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current issue, we consider a general class of two coupled weakly dissipative fractional Schro center dot dinger-type equations. We will prove that the asymptotic dynamics of the solutions for such NLS system will be described by the existence of a regular compact global attractor in the phase space that has finite fractal dimension.
引用
收藏
页码:559 / 581
页数:23
相关论文
共 37 条
[1]   A note on the finite fractal dimension of the global attractors for dissipative nonlinear Schrodinger-type equations [J].
Alouini, Brahim .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) :91-103
[2]   FINITE DIMENSIONAL GLOBAL ATTRACTOR FOR A BOSE-EINSTEIN EQUATION IN A TWO DIMENSIONAL UNBOUNDED DOMAIN [J].
Alouini, Brahim .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) :1781-1801
[3]   ATTRACTORS OF PARTIAL-DIFFERENTIAL EVOLUTION-EQUATIONS IN AN UNBOUNDED DOMAIN [J].
BABIN, AV ;
VISHIK, MI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 116 :221-243
[4]  
Ball JM, 2004, DISCRETE CONT DYN-A, V10, P31
[5]   PROPAGATION OF NONLINEAR WAVE ENVELOPES [J].
BENNEY, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (02) :133-&
[6]   The attractor of the dissipative coupled fractional Schrodinger equations [J].
Cheng, Ming .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (05) :645-656
[7]   Periodic waves for a system of coupled, higher order nonlinear Schrodinger equations with third order dispersion [J].
Chow, KW .
PHYSICS LETTERS A, 2003, 308 (5-6) :426-431
[8]  
Chueshov I. D., 2002, U LECT CONT MATH, V19
[9]  
Chueshov I, 2008, MEM AM MATH SOC, V195, pVIII
[10]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573