Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis

被引:30
作者
Tao, Hui [1 ,2 ]
Yang, Jing-Jing [3 ]
Shi, Kai-Hu [1 ,2 ]
机构
[1] Anhui Med Univ, Hosp 2, Dept Cardiothorac Surg, Hefei 230601, Anhui, Peoples R China
[2] Anhui Med Univ, Cardiovasc Res Ctr, Hefei 230601, Peoples R China
[3] Anhui Med Univ, Hosp 2, Dept Pharmacol, Hefei 230601, Peoples R China
关键词
cardiac fibrosis; DNA methylation; epigenetic; histone modification; long non-coding RNA; microRNA; POLYCOMB-GROUP PROTEIN; DNA METHYLATION; GENE-EXPRESSION; GENOME REGULATION; LONG; MICRORNAS; HYPERTROPHY; REPRESSION; HISTONE; BINDING;
D O I
10.1517/14728222.2014.1001740
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction: Cardiac fibroblast activation is a pivotal cellular event in cardiac fibrosis. Numerous studies have indicated that epigenetic modifications control cardiac fibroblast activation. Greater knowledge of the role of epigenetic modifications could improve understanding of the cardiac fibrosis pathogenesis. Areas covered: The aim of this review is to describe the present knowledge about the important role of non-coding RNA (ncRNA) transcripts in epigenetic gene regulation in cardiac fibrosis and looks ahead on new perspectives of epigenetic modification research. Furthermore, we will discuss examples of ncRNAs that interact with histone modification or DNA methylation to regulate gene expression. Expert opinion: MicroRNAs (miRNAs) and long ncRNAs (lncRNAs) modulate several important aspects of function. Recently, some studies continue to find novel pathways, including the important role of ncRNA transcripts in epigenetic gene regulation. Targeting the miRNAs and lncRNAs can be a promising direction in cardiac fibrosis treatment. We discuss new perspectives of ncRNAs that interact with histone modification or DNA methylation to regulate gene expression, others that are targets of these epigenetic mechanisms. The emerging recognition of the diverse functions of ncRNAs in regulating gene expression by epigenetic mechanisms suggests that they may represent new targets for therapeutic intervention.
引用
收藏
页码:707 / 716
页数:10
相关论文
共 115 条
[1]  
[Anonymous], 2013, SUBCELL BIOCH
[2]   Genomewide Mapping and Screening of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) 3′ Untranslated Regions Identify Bicistronic and Polycistronic Viral Transcripts as Frequent Targets of KSHV MicroRNAs [J].
Bai, Zhiqiang ;
Huang, Yufei ;
Li, Wan ;
Zhu, Ying ;
Jung, Jae U. ;
Lu, Chun ;
Gao, Shou-Jiang .
JOURNAL OF VIROLOGY, 2014, 88 (01) :377-392
[3]   Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy [J].
Bang, Claudia ;
Batkai, Sandor ;
Dangwal, Seema ;
Gupta, Shashi Kumar ;
Foinquinos, Ariana ;
Holzmann, Angelika ;
Just, Annette ;
Remke, Janet ;
Zimmer, Karina ;
Zeug, Andre ;
Ponimaskin, Evgeni ;
Schmiedl, Andreas ;
Yin, Xiaoke ;
Mayr, Manuel ;
Halder, Rashi ;
Fischer, Andre ;
Engelhardt, Stefan ;
Wei, Yuanyuan ;
Schober, Andreas ;
Fiedler, Jan ;
Thum, Thomas .
JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (05) :2136-2146
[4]   Use of cardiac magnetic resonance imaging to evaluate cardiac structure, function and fibrosis in children with infantile Pompe disease on enzyme replacement therapy [J].
Barker, Piers C. A. ;
Pasquali, Sara K. ;
Darty, Stephen ;
Ing, Richard J. ;
Li, Jennifer S. ;
Kim, Raymond J. ;
DeArmey, Stephanie ;
Kishnani, Priya S. ;
Campbell, Michael J. .
MOLECULAR GENETICS AND METABOLISM, 2010, 101 (04) :332-337
[5]  
Beisel CL, 2014, METHODS MOL BIOL, V1111, P259, DOI 10.1007/978-1-62703-755-6_19
[6]   A Long Noncoding RNA Mediates Both Activation and Repression of Immune Response Genes [J].
Carpenter, Susan ;
Aiello, Daniel ;
Atianand, Maninjay K. ;
Ricci, Emiliano P. ;
Gandhi, Pallavi ;
Hall, Lisa L. ;
Byron, Meg ;
Monks, Brian ;
Henry-Bezy, Meabh ;
Lawrence, Jeanne B. ;
O'Neill, Luke A. J. ;
Moore, Melissa J. ;
Caffrey, Daniel R. ;
Fitzgerald, Katherine A. .
SCIENCE, 2013, 341 (6147) :789-792
[7]   The Noncoding RNA Revolution-Trashing Old Rules to Forge New Ones [J].
Cech, Thomas R. ;
Steitz, Joan A. .
CELL, 2014, 157 (01) :77-94
[8]   MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes [J].
Chavali, Vishalakshi ;
Tyagi, Suresh C. ;
Mishra, Paras K. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2012, 425 (03) :668-672
[9]   Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes [J].
Chen, Shali ;
Puthanveetil, Prasanth ;
Feng, Biao ;
Matkovich, Scot J. ;
Dorn, Gerald W., II ;
Chakrabarti, Subrata .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2014, 18 (03) :415-421
[10]   Endogenous IRAK-M Attenuates Postinfarction Remodeling Through Effects on Macrophages and Fibroblasts [J].
Chen, Wei ;
Saxena, Amit ;
Li, Na ;
Sun, Jinyu ;
Gupta, Amit ;
Lee, Dong-Wook ;
Tian, Qi ;
Dobaczewski, Marcin ;
Frangogiannis, Nikolaos G. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2012, 32 (11) :2598-+