Analysis of the coupled Navier-Stokes/Biot problem

被引:39
|
作者
Cesmelioglu, Aycil [1 ]
机构
[1] Oakland Univ, Dept Math & Stat, 146 Lib Dr, Rochester, MI 48309 USA
关键词
Navier-Stokes; Darcy; Biot; Poroelastic; Weak formulation; Existence; JOSEPH; FRACTURES; BEAVERS; MODEL; FLOW;
D O I
10.1016/j.jmaa.2017.07.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a weak formulation of the coupled problem defining the interaction between a free fluid and a poroelastic structure. The problem is governed by the time-dependent incompressible Navier Stokes equations and the Biot equations. Under a small data assumption, existence and uniqueness results are proved and a priori estimates are provided. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:970 / 991
页数:22
相关论文
共 50 条
  • [21] Existence of a weak solution for the fully coupled Navier-Stokes/Darcy-transport problem
    Cesmelioglu, Aycil
    Riviere, Beatrice
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (07) : 4138 - 4175
  • [22] MOOSE Navier-Stokes module
    Lindsay, Alexander
    Giudicelli, Guillaume
    German, Peter
    Peterson, John
    Wang, Yaqi
    Freile, Ramiro
    Andrs, David
    Balestra, Paolo
    Tano, Mauricio
    Hu, Rui
    Zou, Ling
    Gaston, Derek
    Permann, Cody
    Schunert, Sebastian
    SOFTWAREX, 2023, 23
  • [23] Multirate partitioned Runge-Kutta methods for coupled Navier-Stokes
    Kang, Shinhoo
    Dener, Alp
    Hamilton, Aidan
    Zhang, Hong
    Constantinescu, Emil M.
    Jacob, Robert L.
    COMPUTERS & FLUIDS, 2023, 264
  • [24] AXISYMMETRIC SOLUTIONS TO COUPLED NAVIER-STOKES/ALLEN-CAHN EQUATIONS
    Xu, Xiang
    Zhao, Liyun
    Liu, Chun
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 41 (06) : 2246 - 2282
  • [25] UNILATERAL PROBLEM FOR THE NAVIER-STOKES OPERATORS IN NONCYLINDRICAL DOMAIN
    VIEIRA, MC
    RABELLO, TN
    COMPUTATIONAL & APPLIED MATHEMATICS, 1994, 13 (01): : 67 - 77
  • [26] Optimal shape control problem for the Navier-Stokes equations
    Ton, BA
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 41 (06) : 1733 - 1747
  • [27] Global strong solution of the pressureless Navier-Stokes/Navier-Stokes system
    Zhang, Yue
    Yu, Minyan
    Tang, Houzhi
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (03) : 1045 - 1062
  • [28] Stokes and Navier-Stokes equations with Navier boundary conditions
    Acevedo Tapia, P.
    Amrouche, C.
    Conca, C.
    Ghosh, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 258 - 320
  • [29] Decoupled modified characteristics finite element method for the time dependent Navier-Stokes/Darcy problem
    Si, Zhiyong
    Wang, Yunxia
    Li, Shishun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (09) : 1392 - 1404
  • [30] A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER-STOKES AND CONVECTION-DIFFUSION EQUATIONS
    Deteix, J.
    Jendoubi, A.
    Yakoubi, D.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2415 - 2439