Analysis of the coupled Navier-Stokes/Biot problem

被引:42
作者
Cesmelioglu, Aycil [1 ]
机构
[1] Oakland Univ, Dept Math & Stat, 146 Lib Dr, Rochester, MI 48309 USA
关键词
Navier-Stokes; Darcy; Biot; Poroelastic; Weak formulation; Existence; JOSEPH; FRACTURES; BEAVERS; MODEL; FLOW;
D O I
10.1016/j.jmaa.2017.07.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a weak formulation of the coupled problem defining the interaction between a free fluid and a poroelastic structure. The problem is governed by the time-dependent incompressible Navier Stokes equations and the Biot equations. Under a small data assumption, existence and uniqueness results are proved and a priori estimates are provided. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:970 / 991
页数:22
相关论文
共 32 条
[1]  
Adams R. A., 1978, PURE APPL MATH
[2]   Numerical analysis of the Navier-Stokes/Darcy coupling [J].
Badea, Lori ;
Discacciati, Marco ;
Quarteroni, Alfio .
NUMERISCHE MATHEMATIK, 2010, 115 (02) :195-227
[3]   Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction [J].
Badia, Santiago ;
Quaini, Annalisa ;
Quarteroni, Alfio .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (21) :7986-8014
[4]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[5]   THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID [J].
BIOT, MA .
JOURNAL OF APPLIED PHYSICS, 1955, 26 (02) :182-185
[6]   General theory of three-dimensional consolidation [J].
Biot, MA .
JOURNAL OF APPLIED PHYSICS, 1941, 12 (02) :155-164
[7]  
Bodthr T., 2014, ADV MATH FLUID MECH
[8]   Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche's coupling approach [J].
Bukac, M. ;
Yotov, I. ;
Zakerzadeh, R. ;
Zunino, P. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 292 :138-170
[9]   An Operator Splitting Approach for the Interaction Between a Fluid and a Multilayered Poroelastic Structure [J].
Bukac, Martina ;
Yotov, Ivan ;
Zunino, Paolo .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) :1054-1100
[10]  
Cao YZ, 2010, COMMUN MATH SCI, V8, P1