Fractional Brownian motion with zero Hurst parameter: a rough volatility viewpoint

被引:12
作者
Neuman, Eyal [1 ]
Rosenbaum, Mathieu [2 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Ecole Polytech, CMAP, Palaiseau, France
关键词
fractional Brownian motion; log-correlated random field; rough volatility; multifractal processes; GAUSSIAN MULTIPLICATIVE CHAOS; TURBULENCE;
D O I
10.1214/18-ECP158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Rough volatility models are becoming increasingly popular in quantitative finance. In this framework, one considers that the behavior of the log-volatility process of a financial asset is close to that of a fractional Brownian motion with Hurst parameter around 0.1. Motivated by this, we wish to define a natural and relevant limit for the fractional Brownian motion when H goes to zero. We show that once properly normalized, the fractional Brownian motion converges to a Gaussian random distribution which is very close to a log-correlated random field.
引用
收藏
页数:12
相关论文
共 33 条
[1]  
[Anonymous], 1997, COWLES FDN DISCUSSIO
[2]  
[Anonymous], ARXIV14075605
[3]   Log-infinitely divisible multifractal processes [J].
Bacry, E ;
Muzy, JF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (03) :449-475
[4]  
Bacry E, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.026103
[5]   Multifractal products of cylindrical pulses [J].
Barral, J ;
Mandelbrot, BB .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (03) :409-430
[6]  
Bayer C., 2017, ARXIV170305132
[7]  
Bayer C., 2017, ARXIV171007481
[8]   Pricing under rough volatility [J].
Bayer, Christian ;
Friz, Peter ;
Gatheral, Jim .
QUANTITATIVE FINANCE, 2016, 16 (06) :887-904
[9]   Hybrid scheme for Brownian semistationary processes [J].
Bennedsen, Mikkel ;
Lunde, Asger ;
Pakkanen, Mikko S. .
FINANCE AND STOCHASTICS, 2017, 21 (04) :931-965
[10]  
Bennedsen Mikkel, 2016, ARXIV161000332