Estimation of multidimensional item response theory models with correlated latent variables using variational autoencoders

被引:11
作者
Converse, Geoffrey [1 ]
Curi, Mariana [2 ]
Oliveira, Suely [1 ]
Templin, Jonathan [1 ]
机构
[1] Univ Iowa, Iowa City, IA 52242 USA
[2] Univ Sao Paulo, Sao Paulo, Brazil
关键词
Item response theory; Interpretable neural networks; Parameter estimation; Educational measurement;
D O I
10.1007/s10994-021-06005-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial neural networks with a specific autoencoding structure are capable of estimating parameters for the multidimensional logistic 2-parameter (ML2P) model in item response theory (Curi et al. in International joint conference on neural networks (IJCNN), 2019), but with limitations, such as uncorrelated latent traits. In this work, we extend variational auto encoders (VAE) to estimate item parameters and correlated latent abilities, and directly compare the ML2P-VAE method to more traditional parameter estimation methods, such as Monte Carlo expectation-maximization. The incorporation of a non-identity covariance matrix in a VAE requires a novel VAE architecture, which can be utilized in applications outside of education. In addition, we show that the ML2P-VAE method is capable of estimating parameters for models with a large number of latent variables with low computational cost, where traditional methods are infeasible for data with high-dimensional latent traits.
引用
收藏
页码:1463 / 1480
页数:18
相关论文
共 30 条
[1]  
[Anonymous], 2005, RR0524 ETS
[2]  
Atkinson KE., 1989, INTRO NUMERICAL ANAL, DOI DOI 10.1002/0471667196.ESS1837
[3]  
Baker F.B., 2004, Item Response Theory: Parameter Estimation Techniques, DOI DOI 10.1201/9781482276725
[4]  
Birnbaum A., 1968, Statistical theories of mental test scores, P397, DOI DOI 10.1002/J.2333-8504.1981.TB01255.X
[5]   MARGINAL MAXIMUM-LIKELIHOOD ESTIMATION OF ITEM PARAMETERS - APPLICATION OF AN EM ALGORITHM [J].
BOCK, RD ;
AITKIN, M .
PSYCHOMETRIKA, 1981, 46 (04) :443-459
[6]   Diagnosing Teachers' Understandings of Rational Numbers: Building a Multidimensional Test Within the Diagnostic Classification Framework [J].
Bradshaw, Laine ;
Izsak, Andrew ;
Templin, Jonathan ;
Jacobson, Erik .
EDUCATIONAL MEASUREMENT-ISSUES AND PRACTICE, 2014, 33 (01) :2-14
[7]   HIGH-DIMENSIONAL EXPLORATORY ITEM FACTOR ANALYSIS BY A METROPOLIS-HASTINGS ROBBINS-MONRO ALGORITHM [J].
Cai, Li .
PSYCHOMETRIKA, 2010, 75 (01) :33-57
[8]  
Camara W., 2015, ACT Research Report Series, V2015
[9]  
Chalmers RP, 2012, J STAT SOFTW, V48, P1
[10]   FACTOR-ANALYSIS OF DICHOTOMIZED VARIABLES [J].
CHRISTOFFERSSON, A .
PSYCHOMETRIKA, 1975, 40 (01) :5-32