Hybrid Estimation of Distribution Algorithm for solving a Resource Level Allocation Problem in a Legal Business

被引:0
作者
Ayodele, Mayowa [1 ]
Papamichail, K. Nadia [1 ]
Gallagher, Geraldine [2 ]
Buckley, Darren [2 ]
机构
[1] Univ Manchester, Manchester, Lancs, England
[2] DWF Law LLP, Manchester, Lancs, England
来源
PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION) | 2019年
关键词
Estimation of Distribution Algorithm; Genetic Algorithm; Machine Learning; Fitness Approximation; Insurance; Legal Business; Random Forest; Resource Level Allocation;
D O I
10.1145/3319619.3326782
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Resource level allocation entails assigning execution times to a set of resource levels required to complete a task. This is an important problem, particularly in the services sector. We consider a real-world variant of this problem originating from a legal business. The objective considered is the maximisation of damages savings. We apply an Estimation of Distribution Algorithm (EDA) to this problem and use a machine learning model, Random Forest, as a fitness approximation method. The hybrid EDA presents promising results.
引用
收藏
页码:45 / 46
页数:2
相关论文
共 4 条
[1]  
Ayodele M, 2017, IEEE C EVOL COMPUTAT, P2364, DOI 10.1109/CEC.2017.7969591
[2]  
Ceberio J, 2014, 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P2459, DOI 10.1109/CEC.2014.6900435
[3]  
Jin Y, 2005, SOFT COMPUT, V9, P3, DOI [10.1007/s00500-003-0328-5, 10.1007/S00500-003-0328-5]
[4]   Evolutionary Computation Meets Machine Learning: A Survey [J].
Zhang, Jun ;
Zhan, Zhi-hui ;
Lin, Ying ;
Chen, Ni ;
Gong, Yue-jiao ;
Zhong, Jing-hui ;
Chung, Henry S. H. ;
Li, Yun ;
Shi, Yu-hui .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2011, 6 (04) :68-75