Discretizing the one-dimensional Dirac equation

被引:3
|
作者
Wessels, PPF [1 ]
Caspers, WJ [1 ]
Wiegel, FW [1 ]
机构
[1] Univ Twente, Dept Appl Phys, NL-7500 AE Enschede, Netherlands
来源
EUROPHYSICS LETTERS | 1999年 / 46卷 / 02期
关键词
D O I
10.1209/epl/i1999-00234-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We suggest a discretization of the Dirac equation based on time symmetry. This iterative scheme is correct to second order in a, the lattice distance in time, and can therefore be considered as an improvement to the master equation suggested implicitly by Gaveau et al. (Phys. Rev. Lett., 53 (1984) 419), which generates the Feynman checkerboard propagator. Due to time symmetry this new scheme automatically conserves probability density.
引用
收藏
页码:123 / 126
页数:4
相关论文
共 50 条
  • [1] Bernoulli scheme and one-dimensional Dirac equation
    Arkhipov, V. V.
    Kolt, M. V.
    Kudusov, A. S.
    BULLETIN OF THE UNIVERSITY OF KARAGANDA-PHYSICS, 2011, 2 (62): : 3 - 8
  • [2] Solution of the Dirac equation in a one-dimensional box
    Alhaidari, A. D.
    El Aaoud, E.
    PROCEEDINGS OF THE FIFTH SAUDI PHYSICAL SOCIETY CONFERENCE (SPS5), 2011, 1370
  • [3] One-dimensional q-Dirac equation
    Allahverdiev, Bilender P.
    Tuna, Huseyin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7287 - 7306
  • [4] THE ONE-DIMENSIONAL DIRAC EQUATION WITH CONCENTRATED NONLINEARITY
    Cacciapuoti, Claudio
    Carlone, Raffaele
    Noja, Diego
    Posilicano, Andrea
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (03) : 2246 - 2268
  • [5] TRANSPARENT POTENTIAL FOR THE ONE-DIMENSIONAL DIRAC-EQUATION
    NOGAMI, Y
    TOYAMA, FM
    PHYSICAL REVIEW A, 1992, 45 (07): : 5258 - 5261
  • [6] Scattering in one-dimensional heterostructures described by the Dirac equation
    Peres, N. M. R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (09)
  • [7] INVERSION OF TRANSMISSION FOR THE ONE-DIMENSIONAL DIRAC-EQUATION
    CLERK, GJ
    DAVIES, AJ
    AMERICAN JOURNAL OF PHYSICS, 1992, 60 (06) : 537 - 539
  • [8] ON THE DIRAC-EQUATION WITH A ONE-DIMENSIONAL SCALAR POTENTIAL
    PERCOCO, U
    VILLALBA, VM
    PHYSICS LETTERS A, 1989, 141 (5-6) : 221 - 222
  • [9] Conjugated Molecules Described by a One-Dimensional Dirac Equation
    Ernzerhof, Matthias
    Goyer, Francois
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (06) : 1818 - 1824
  • [10] Darboux transformations of the one-dimensional stationary Dirac equation
    Debergh, N
    Pecheritsin, AA
    Samsonov, BF
    Van den Bossche, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (14): : 3279 - 3287