Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology

被引:299
作者
Wang, Baojun [2 ,3 ]
Kitney, Richard I. [2 ,3 ]
Joly, Nicolas [1 ]
Buck, Martin [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Fac Nat Sci, Div Biol, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Ctr Synthet Biol & Innovat, London SW7 2AZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Bioengn, London SW7 2AZ, England
来源
NATURE COMMUNICATIONS | 2011年 / 2卷
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
III PROTEIN SECRETION; DIRECTED EVOLUTION; EXPRESSION; CONSTRUCTION; PROMOTER; DESIGN; CELLS; PARTS;
D O I
10.1038/ncomms1516
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a sigma(54)-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts.
引用
收藏
页数:9
相关论文
共 49 条
[1]  
Alon U, 2007, INTRO SYSTEMS BIOL D
[2]   Environmental signal integration by a modular AND gate [J].
Anderson, J. Christopher ;
Voigt, Christopher A. ;
Arkin, Adam P. .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3
[3]   Environmentally controlled invasion of cancer cells by engineered bacteria [J].
Anderson, JC ;
Clarke, EJ ;
Arkin, AP ;
Voigt, CA .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 355 (04) :619-627
[4]   A synthetic multicellular system for programmed pattern formation [J].
Basu, S ;
Gerchman, Y ;
Collins, CH ;
Arnold, FH ;
Weiss, R .
NATURE, 2005, 434 (7037) :1130-1134
[5]   Transcription factor logic using chemical complementation [J].
Bronson, Jonathan E. ;
Mazur, William W. ;
Cornish, Virginia W. .
MOLECULAR BIOSYSTEMS, 2008, 4 (01) :56-58
[6]   A second paradigm for gene activation in bacteria [J].
Buck, M. ;
Bose, D. ;
Burrows, P. ;
Cannon, W. ;
Joly, N. ;
Pape, T. ;
Rappas, M. ;
Schumacher, J. ;
Wigneshweraraj, S. ;
Zhang, X. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2006, 34 :1067-1071
[7]   Who comes first?: How plant pathogenic bacteria orchestrate type III secretion [J].
Büttner, D ;
Bonas, U .
CURRENT OPINION IN MICROBIOLOGY, 2006, 9 (02) :193-200
[8]   Refinement and standardization of synthetic biological parts and devices [J].
Canton, Barry ;
Labno, Anna ;
Endy, Drew .
NATURE BIOTECHNOLOGY, 2008, 26 (07) :787-793
[9]   Programming gene expression with combinatorial promoters [J].
Cox, Robert Sidney, III ;
Surette, Michael G. ;
Elowitz, Michael B. .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[10]   Design, construction and characterization of a set of insulated bacterial promoters [J].
Davis, Joseph H. ;
Rubin, Adam J. ;
Sauer, Robert T. .
NUCLEIC ACIDS RESEARCH, 2011, 39 (03) :1131-1141