The birth of a coronal mass ejection

被引:51
作者
Gou, Tingyu [1 ,2 ,3 ,4 ]
Liu, Rui [1 ,4 ]
Kliem, Bernhard [5 ,6 ]
Wang, Yuming [1 ,4 ,7 ]
Veronig, Astrid M. [2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China
[2] Karl Franzens Univ Graz, Inst Phys, IGAM, Univ Pl 5, A-8010 Graz, Austria
[3] Karl Franzens Univ Graz, Kanzelhohe Observ, Univ Pl 5, A-8010 Graz, Austria
[4] CAS Ctr Excellence Comparat Planetol, Hefei 230026, Anhui, Peoples R China
[5] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[6] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England
[7] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
基金
奥地利科学基金会;
关键词
MAGNETIC RECONNECTION; CURRENT SHEET; FLUX MODEL; SOLAR; ACCELERATION; ERUPTIONS;
D O I
10.1126/sciadv.aau7004
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Sun's atmosphere is frequently disrupted by coronal mass ejections (CMEs), coupled with flares and energetic particles. The coupling is usually attributed to magnetic reconnection at a vertical current sheet connecting the flare and CME, with the latter embedding a helical magnetic structure known as flux rope. However, both the origin of flux ropes and their nascent paths toward eruption remain elusive. Here, we present an observation of how a stellar-sized CME bubble evolves continuously from plasmoids, mini flux ropes that are barely resolved, within half an hour. The eruption initiates when plasmoids springing from a vertical current sheet merge into a leading plasmoid, which rises at increasing speeds and expands impulsively into the CME bubble, producing hard x-ray bursts simultaneously. This observation illuminates a complete CME evolutionary path capable of accommodating a wide variety of plasma phenomena by bridging the gap between microscale and macroscale dynamics.
引用
收藏
页数:9
相关论文
共 49 条
[1]   A model for solar coronal mass ejections [J].
Antiochos, SK ;
DeVore, CR ;
Klimchuk, JA .
ASTROPHYSICAL JOURNAL, 1999, 510 (01) :485-493
[2]   Extending the concept of separatrices to QSLs for magnetic reconnection [J].
Demoulin, P. .
RECONNECTION AT SUN AND IN MAGNETOSPHERES, 2006, 37 (07) :1269-1282
[3]   Electron acceleration from contracting magnetic islands during reconnection [J].
Drake, J. F. ;
Swisdak, M. ;
Che, H. ;
Shay, M. A. .
NATURE, 2006, 443 (7111) :553-556
[4]   THE EMERGENCE OF A TWISTED FLUX TUBE INTO THE SOLAR ATMOSPHERE: SUNSPOT ROTATIONS AND THE FORMATION OF A CORONAL FLUX ROPE [J].
Fan, Y. .
ASTROPHYSICAL JOURNAL, 2009, 697 (02) :1529-1542
[5]   CME theory and models [J].
Forbes, T. G. ;
Linker, J. A. ;
Chen, J. ;
Cid, C. ;
Kota, K. ;
Lee, M. A. ;
Mann, G. ;
Mikic, Z. ;
Potgieter, M. S. ;
Schmidt, J. M. ;
Siscoe, G. L. ;
Vainio, R. ;
Antiochos, S. K. ;
Riley, P. .
SPACE SCIENCE REVIEWS, 2006, 123 (1-3) :251-302
[6]   FINITE-RESISTIVITY INSTABILITIES OF A SHEET PINCH [J].
FURTH, HP ;
KILLEEN, J ;
ROSENBLUTH, MN .
PHYSICS OF FLUIDS, 1963, 6 (04) :459-484
[7]   Direct Observation of Two-step Magnetic Reconnection in a Solar Flare [J].
Gou, Tingyu ;
Veronig, Astrid M. ;
Dickson, Ewan C. ;
Hernandez-Perez, Aaron ;
Liu, Rui .
ASTROPHYSICAL JOURNAL LETTERS, 2017, 845 (01)
[8]   Do All Candle-Flame-Shaped Flares Have the Same Temperature Distribution? [J].
Gou, Tingyu ;
Liu, Rui ;
Wang, Yuming .
SOLAR PHYSICS, 2015, 290 (08) :2211-2230
[9]   Differential emission measures from the regularized inversion of Hinode and SDO data [J].
Hannah, I. G. ;
Kontar, E. P. .
ASTRONOMY & ASTROPHYSICS, 2012, 539
[10]   HELICAL KINK INSTABILITY IN A CONFINED SOLAR ERUPTION [J].
Hassanin, Alshaimaa ;
Kliem, Bernhard .
ASTROPHYSICAL JOURNAL, 2016, 832 (02)