The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates'

被引:80
作者
Moinet, Gabriel Y. K. [1 ]
Hunt, John E. [1 ]
Kirschbaum, Miko U. F. [2 ]
Morcom, Christopher P. [3 ]
Midwood, Andrew J. [4 ]
Millard, Peter [1 ]
机构
[1] Landcare Res, POB 69040, Lincoln 7640, New Zealand
[2] Landcare Res, Private Bag 11052, Palmerston North 4442, New Zealand
[3] Univ Waikato, Private Bag 3105, Hamilton 3240, New Zealand
[4] James Hutton Inst, Aberdeen AB15 8QH, Scotland
关键词
Soil organic matter; Decomposition; Temperature sensitivity; Heterotrophic respiration; Substrate availability; Carbon stable isotopes; HETEROTROPHIC RESPIRATION; CO2; EFFLUX; CARBON; AVAILABILITY; DEPENDENCE; STABILIZATION; DISTURBANCE; MECHANISMS; TURNOVER; STORAGE;
D O I
10.1016/j.soilbio.2017.10.031
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Soils can be sources or sinks of carbon depending on the balance between carbon inputs from plants and losses from the decomposition of soil organic matter (SOM). A good understanding of the temperature sensitivity of SOM decomposition is critical for forecasting whether soils in a warming world will lose or gain carbon, and therefore accelerate or mitigate the rate of increasing atmospheric carbon dioxide (CO2) concentration. We provide new evidence to show that the response of SOM decomposition to temperature may be constrained by substrate availability to microbial decomposers. We used laboratory incubations of a grassland soil to compare the temperature sensitivity of SOM decomposition with unmodified substrate availability with that of the same soil in which substrate availability was reduced by adding allophone, a clay-size mineral with a high capacity for binding SOM. In the soil with no added allophone, the decomposition rate increased about 7-fold over the temperature range from 1 to 40 degrees C. With added allophone, decomposition rate increased only about 3 fold over the same temperature range. We then used a non-disruptive, natural abundance isotopic technique at our field site to partition total soil respiration into CO2 efflux from newly released, C-13-depleted SOM (root respiration and rhizosphere decomposition) from CO2 efflux from older C-13-enriched SOM from the decomposition of more stable SOM. We found no increase in the decomposition rate of the C-13-enriched pool of SOM between 11 and 28 degrees C. That finding contrasts with most previous studies that have generally reported strong increases in SOM decomposition with temperature. We hypothesised that the large temperature sensitivity observed in laboratory incubations was due to substrate becoming readily available as a result of the disturbance involved in collecting soil samples. In undisturbed field conditions, the limiting step for the decomposition of the more stable SOM pool may be the rate at which decomposable substrate becomes available for decomposition. Our findings will have important implications for the feedbacks between soil carbon storage and the rate of increase in atmospheric CO2 concentration mediated by global warming.
引用
收藏
页码:333 / 339
页数:7
相关论文
共 50 条
  • [31] Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time
    Jia, Yufu
    Kuzyakov, Yakov
    Wang, Guoan
    Tan, Wenbing
    Zhu, Biao
    Feng, Xiaojuan
    LAND DEGRADATION & DEVELOPMENT, 2020, 31 (05) : 632 - 645
  • [32] Rhizosphere influence on microbial functions: consequence for temperature sensitivity of soil organic matter decomposition at early stage of plant growth
    Zhou, Jie
    Liu, Chunyan
    Shi, Lingling
    Zamanian, Kazem
    PLANT AND SOIL, 2024, 494 (1-2) : 95 - 109
  • [33] Drivers of temperature sensitivity of decomposition of soil organic matter along a mountain altitudinal gradient in the Western Carpathians
    Klimek, Beata
    Jelonkiewicz, Lukasz
    Niklinska, Maria
    ECOLOGICAL RESEARCH, 2016, 31 (05) : 609 - 615
  • [34] Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro
    Blagodatskaya, Evgenia
    Blagodatsky, Sergey
    Khomyakov, Nikita
    Myachina, Olga
    Kuzyakov, Yakov
    SCIENTIFIC REPORTS, 2016, 6
  • [35] Modeling temperature sensitivity of soil organic matter decomposition: Splitting the pools
    Laub, Moritz
    Ali, Rana Shahbaz
    Demyan, Michael Scott
    Nkwain, Yvonne Funkuin
    Poll, Christian
    Hogy, Petra
    Poyda, Arne
    Ingwersen, Joachim
    Blagodatsky, Sergey
    Kandeler, Ellen
    Cadisch, Georg
    SOIL BIOLOGY & BIOCHEMISTRY, 2021, 153
  • [36] Addition of sorptive mineral phases to soils decreases short-term organic matter decomposition by reducing microbial access to substrates
    Nunez, Jonathan
    Moinet, Gabriel Y. K.
    Graham, Scott L.
    Turnbull, Matthew H.
    Grelet, Gwen-Aelle
    Whitehead, David
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2022, 73 (01)
  • [37] Temperature response of soil organic matter mineralisation in arctic soil profiles
    Moni, Christophe
    Lerch, Thomas Z.
    de Zarruk, Katrin Knoth
    Strand, Line Tau
    Forte, Claudia
    Certini, Giacomo
    Rasse, Daniel P.
    SOIL BIOLOGY & BIOCHEMISTRY, 2015, 88 : 236 - 246
  • [38] Direct measurement of the in situ decomposition of microbial-derived soil organic matter
    Hu, Yuntao
    Zheng, Qing
    Noll, Lisa
    Zhang, Shasha
    Wanek, Wolfgang
    SOIL BIOLOGY & BIOCHEMISTRY, 2020, 141
  • [39] The Role of Soil Characteristics on Temperature Sensitivity of Soil Organic Matter
    Haddix, Michelle L.
    Plante, Alain F.
    Conant, Richard T.
    Six, Johan
    Steinweg, J. Megan
    Magrini-Bair, Kim
    Drijber, Rhae A.
    Morris, Sherri J.
    Paul, Eldor A.
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2011, 75 (01) : 56 - 68
  • [40] Thermal acclimation of organic matter decomposition in an artificial forest soil is related to shifts in microbial community structure
    Wei, Hui
    Guenet, Bertrand
    Vicca, Sara
    Nunan, Naoise
    AbdElgawad, Hamada
    Pouteau, Valerie
    Shen, Weijun
    Janssens, Ivan A.
    SOIL BIOLOGY & BIOCHEMISTRY, 2014, 71 : 1 - 12