INEQUALITIES IN SUMMABILITY THEORY OF FOURIER SERIES

被引:0
作者
Weisz, Ferenc [1 ]
机构
[1] Eotvos Lorand Univ, Dept Numer Anal, H-1117 Budapest, Hungary
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2009年 / 3卷 / 03期
关键词
Wiener amalgam spaces; Feichtinger's algebra; modulation spaces; Herz and Hardy spaces; theta-summability; Lebesgue points; WIENER AMALGAMS; CONVERGENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some recent results on a general summability method, the so-called theta-summability, are summarized for one-dimensional Fourier series. Natural choices of theta are investigated, i.e., if theta is in Wiener amalgam spaces, Feichtinger's algebra or modulation spaces. Sufficient and necessary conditions are given for the uniform and L-1 norm and a e. convergence of the theta-means sigma(theta)(n)f to the function f. The maximal operator of the theta-means is investigated and it is proved that it is bounded on L-p spaces and on Hardy spaces.
引用
收藏
页码:357 / 368
页数:12
相关论文
共 50 条
[41]   Summability of Fourier-Laplace Series with the Method of Lacunary Arithmetical Means at Lebesgue Points [J].
Feng DAI Kun Yang WANG Department of MathematicsBeijing Normal UniversityBeijing PRChina Emailwangkybnueducn .
Acta Mathematica Sinica(English Series), 2001, 17 (03) :489-496
[42]   Summability of Fourier-Laplace Series with the Method of Lacunary Arithmetical Means at Lebesgue Points [J].
Dai F. ;
Wang K.Y. .
Acta Mathematica Sinica, 2001, 17 (3) :489-496
[43]   Almost everywhere -summability of the Fourier series of functions on the 2-adic additive group [J].
Gat, G. ;
Simon, I. .
ACTA MATHEMATICA HUNGARICA, 2015, 145 (01) :159-173
[44]   Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series [J].
Gat, Gyoergy ;
Goginava, Ushangi ;
Karagulyan, Grigori .
ANALYSIS MATHEMATICA, 2014, 40 (04) :243-266
[45]   Pointwise convergence in Pringsheim's sense of the summability of Fourier transforms on Wiener amalgam spaces [J].
Weisz, Ferenc .
MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01) :143-160
[46]   Lebesgue points of l1-Cesaro summability of d-dimensional Fourier series [J].
Weisz, Ferenc .
ADVANCES IN OPERATOR THEORY, 2021, 6 (03)
[47]   Herz spaces and summability of Fourier transforms [J].
Feichtinger, Hans G. ;
Weisz, Ferenc .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (03) :309-324
[48]   Cesaro and Riesz summability with varying parameters of multi-dimensional Walsh-Fourier series [J].
Weisz, F. .
ACTA MATHEMATICA HUNGARICA, 2020, 161 (01) :292-312
[49]   Restricted summability of the multi-dimensional Cesaro means of Walsh-Kaczmarz-Fourier series [J].
Nagy, Karoly ;
Salim, Mohamed .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (3-4) :381-394
[50]   Uniform summability of double Walsh-Fourier series of functions of bounded partial I⟩-variation [J].
Goginava, Ushangi .
MATHEMATICA SLOVACA, 2014, 64 (06) :1451-1474