SERS spectral evolution of azo-reactions mediated by plasmonic Au@Ag core-shell nanorods

被引:7
|
作者
Hu, Mengen [1 ,2 ]
Huang, Zhulin [1 ,2 ]
Liu, Rui [1 ,3 ]
Zhou, Ningning [3 ]
Tang, Haibin [1 ,2 ]
Meng, Guowen [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, HFIPS, Key Lab Mat Phys,Anhui Key Lab Nanomat & Nanotech, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Hefei Univ, Dept Chem & Mat Engn, Hefei 230601, Peoples R China
来源
NANOSCALE ADVANCES | 2022年 / 4卷 / 22期
基金
中国国家自然科学基金;
关键词
ENHANCED RAMAN-SPECTROSCOPY; CATALYTIC COUPLING REACTION; METAL NANOSTRUCTURES; P-AMINOTHIOPHENOL; CHEMICAL ENERGY; SILVER; GOLD; NANOPARTICLES; RESONANCES; OXIDATION;
D O I
10.1039/d2na00486k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mechanism and application of localized surface plasmon resonance induced photocatalytic reactions remain an issue of interest. In this work, we used Au@Ag core-shell nanorods as a platform for plasmon-driven photocatalysis, which was in situ investigated by surface-enhanced Raman scattering (SERS) spectroscopy. The para-aminothiophenol (PATP) and para-nitrothiophenol (PNTP) adsorbed on the nanorods were irradiated with different excitation wavelengths (633 nm, 785 nm) and transformed into 4,4'-dimercaptoazobenzene (DMAB) as evidenced by the emerging Raman peaks at 1142 cm(-1) , 1390 cm(-1) , 1440 cm(-1) , and 1477 cm(-1) , corresponding to hot carrier dominated oxidation of PATP and reduction of PNTP. Preliminary azo-reaction kinetics and in situ SERS measurements were conducted by comparing the relative intensity ratio of SERS peaks at 1440 cm(-1 )(DMAB stretching of N=N) and 1080 cm(-1) (C-S stretching of PATP and PNTP). These results indicate that the catalytic efficiency was dominated by the excitation wavelength as well as the resonance condition between the plasmon band of the nanorods and the excitation line. As a proof of concept, the Au@Ag core-shell nanorods were used to catalyze 4-nitrophenol molecules, and 4-hydroxyazobenzene molecules as the product were confirmed by in situ SERS spectra as well theoretical predictions, showing potential in plasmon driven catalysis and degradation of organic molecules.
引用
收藏
页码:4730 / 4738
页数:10
相关论文
共 50 条
  • [21] Optical properties of core-shell Ag@Au and Au@Ag nanoparticles
    Szanto, Gaza
    Csarnovics, Istvan
    Bonyar, Attila
    2020 IEEE 26TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME 2020), 2020, : 338 - 341
  • [22] DNAzyme signal amplification based on Au@Ag core-shell nanorods for highly sensitive SERS sensing miRNA-21
    Xu, Wei
    Zhang, Yu
    Chen, Hao
    Dong, Jinhua
    Khan, Ranjha
    Shen, Jianjun
    Liu, Honglin
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2022, 414 (14) : 4079 - 4088
  • [23] SERS Sensor Based on Core-Shell Au@Ag Nanoparticles for the Sensitive Detection of Acrylamide in Foods
    Wang, Haoyu
    Zhang, Li
    Chen, Chen
    Waterhouse, Geoffrey I. N.
    Sun, Yufeng
    Xu, Zhixiang
    FOOD ANALYTICAL METHODS, 2024, 17 (04) : 585 - 593
  • [24] SERS Detection of Insecticide Amitraz Residue in Milk Based on Au@Ag Core-Shell Nanoparticles
    Li, Pan
    Teng, Yuanjie
    Nie, Yonghui
    Liu, Wenhan
    FOOD ANALYTICAL METHODS, 2018, 11 (01) : 69 - 76
  • [25] A novel biosensor based on Au@Ag core-shell nanoparticles for SERS detection of arsenic (III)
    Song, Lulu
    Mao, Kang
    Zhou, Xiaodong
    Hu, Jiming
    TALANTA, 2016, 146 : 285 - 290
  • [26] SERS Detection of Insecticide Amitraz Residue in Milk Based on Au@Ag Core-Shell Nanoparticles
    Pan Li
    Yuanjie Teng
    Yonghui Nie
    Wenhan Liu
    Food Analytical Methods, 2018, 11 : 69 - 76
  • [27] Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application
    Gorbunova, M. V.
    Apyari, V. V.
    Dmitrienko, S. G.
    Garshev, A. V.
    ANALYTICA CHIMICA ACTA, 2016, 936 : 185 - 194
  • [28] Au@Ag Core-shell Nanorods Self-assembled on Polyelectrolyte Multilayers for Ultra-High Sensitivity SERS Fiber Probes
    Wang, Wenbo
    Xiong, Wenhao
    Long, Yuting
    Li, Hong
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2023, 38 (03): : 505 - 513
  • [29] Exploration of Bimetallic Au@Ag Core-Shell Nanocubes Dimers Supports Plasmonic Fano Resonances
    Maati, Lamia Abu El
    Alkallas, Fatemah H.
    Trabelsi, Amira Ben Gouider
    Elaissi, Samira
    Alrebdi, Tahani A.
    Ahmad, Mahmoud
    PLASMONICS, 2022, 17 (04) : 1843 - 1855
  • [30] Au@Ag Core-shell Nanorods Self-assembled on Polyelectrolyte Multilayers for Ultra-High Sensitivity SERS Fiber Probes
    王文博
    XIONG Wenhao
    LONG Yuting
    李宏
    JournalofWuhanUniversityofTechnology(MaterialsScience), 2023, 38 (03) : 505 - 513