Inferring cellular networks using probabilistic graphical models

被引:792
作者
Friedman, N [1 ]
机构
[1] Hebrew Univ Jerusalem, Sch Comp Sci & Engn, IL-91904 Jerusalem, Israel
关键词
D O I
10.1126/science.1094068
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-throughput genome-wide molecular assays, which probe cellular networks from different perspectives, have become central to molecular biology. Probabilistic graphical models are useful for extracting meaningful biological insights from the resulting data sets. These models provide a concise representation of complex cellular networks by composing simpler submodels. Procedures based on well-understood principles for inferring such models from data facilitate a model-based methodology for analysis and discovery. This methodology and its capabilities are illustrated by several recent applications to gene expression data.
引用
收藏
页码:799 / 805
页数:7
相关论文
共 41 条
  • [1] [Anonymous], P 7 INT C COMP MOL B
  • [2] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [3] Context-specific Bayesian clustering for gene expression data
    Barash, Y
    Friedman, N
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (02) : 169 - 191
  • [4] Operations for Learning with Graphical Models
    Buntine, Wray L.
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1994, 2 : 159 - 225
  • [5] Cooper GF, 1999, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, P116
  • [6] Durbin R., 1998, Biological sequence analysis: Probabilistic models of proteins and nucleic acids
  • [7] Using Bayesian networks to analyze expression data
    Friedman, N
    Linial, M
    Nachman, I
    Pe'er, D
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) : 601 - 620
  • [8] Genomic expression programs in the response of yeast cells to environmental changes
    Gasch, AP
    Spellman, PT
    Kao, CM
    Carmel-Harel, O
    Eisen, MB
    Storz, G
    Botstein, D
    Brown, PO
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (12) : 4241 - 4257
  • [9] Getoor L, 2001, RELATIONAL DATA MINING, P307
  • [10] Hartemink A., 2001, PAC S BIOCOMPUT, V6, P422