RADIUS FOR HILBERT C*-MODULE OPERATORS

被引:1
作者
Hosseini, Mohsen Shah [1 ]
Moosavi, Baharak [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Shahr e Qods Branch, Tehran, Iran
[2] Islamic Azad Univ, Dept Math, Safadasht Branch, Tehran, Iran
来源
PROBLEMY ANALIZA-ISSUES OF ANALYSIS | 2020年 / 9卷 / 02期
关键词
Bounded linear operator; Hilbert space; Norm inequality; Numerical radius; NUMERICAL RADIUS; LINEAR-OPERATORS; INEQUALITIES;
D O I
10.15393/j3.art.2020.7330
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce some inequalities between the operator norm and the numerical radius of adjointable operators on Hilbert C*-module spaces. Moreover, we establish some new refinements of numerical radius inequalities for Hilbert space operators. More precisely, we prove that if T is an element of B (H) and min (parallel to T + T*parallel to(2)/2, parallel to T - T*parallel to(2)/2 <= max (inf(parallel to x parallel to=1) parallel to Tx parallel to(2), inf(parallel to x parallel to)=1 parallel to T*x parallel to(2)), then parallel to T parallel to <= root 2 omega(T); this is a considerable improvement of the classical inequality parallel to T parallel to <= 2 omega(T
引用
收藏
页码:87 / 96
页数:10
相关论文
共 15 条