Effects of Digested Pig Slurry on Photosynthesis, Carbohydrate Metabolism and Yield of Tomato (Solanum lycopersicum L.)

被引:0
|
作者
Teng, Yunfei [1 ]
Shang, Bin [1 ]
Tao, Xiuping [2 ]
机构
[1] Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Key Lab Energy Conservat & Waste Management Agr S, Beijing 100081, Peoples R China
[2] Chinese Acad Agr Sci, Inst Urban Agr, Chengdu 610000, Peoples R China
来源
AGRONOMY-BASEL | 2022年 / 12卷 / 09期
关键词
digested pig slurry; tomato; carbohydrate; carbohydrate metabolism enzymes; soilless substrates; BIOGAS SLURRY; NUTRIENT SOLUTION; CROP YIELD; QUALITY; FRUITS; IRRIGATION; FERTILIZATION; STRESS; GROWTH;
D O I
10.3390/agronomy12092042
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soilless cultivation of vegetables is widely used in production. It is also well accepted that digested slurry is frequently applied as a fertilizer in agricultural production. However, the effect of digested pig slurry on yield and quality of tomato soilless cultivation, as well as the yield and quality influenced by plant carbohydrate metabolism, remain unexplored. Here, the dual inputs of fertilizers (digested pig slurry (D) and mineral fertilizer (M)) and soilless substrates (peat substrate (P) and cinder substrate(C)) consisted of four treatments. The dry biomass and fruit yields, photosynthetic parameters, carbohydrate contents and metabolism enzymes in leaves and fruits were recorded during the experimental period. The highest fruit yields were obtained in DP and MP treatments. Although DP treatment significantly increased the fresh weight of single fruits by 18.0% compared to MP treatment, it reduced the number of ripe fruits. The photosynthetic efficiency and carbohydrate contents (sucrose, glucose and fructose) in leaves were generally higher in DP treatment compared to other treatments, as well as the activities of sucrose phosphate synthase and AGPase in leaves. The soluble sugar contents of fruits in DP and DC treatments were enhanced by 12.3% and 37.0%, respectively, compared to MP and MC treatments. Moreover, the current results showed that DP treatment significantly increased the activity of acid invertase in fruit by 36.3%, 31.3%, and 42.2%, respectively, compared to MP, DC, and MC treatments, and decreased the activity of AGPase by 24.2%, 16.0%, and 36.4%, respectively. The current results have demonstrated that DP treatment had better yield and quality, owing to digested pig slurry increasing the photosynthetic efficiency and source strength, and regulated the activities of carbohydrate metabolism enzymes.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Effect of partial rootzone drying on growth, gas exchange, and yield of tomato (Solanum lycopersicum L.)
    Campos, Huitzimengari
    Trejo, Carlos
    Pena-Valdivia, Cecilia B.
    Ramirez-Ayala, Carlos
    Sanchez-Garcia, Prometeo
    SCIENTIA HORTICULTURAE, 2009, 120 (04) : 493 - 499
  • [42] NATIVE ROOTSTOCKS OF Solanum lycopersicum L. AND ITS EFFECT ON YIELD AND TOLERANCE TO Meloidogyne incognita
    Ines-Vasquez, Sergio
    Aquino-Bolanos, Teodulfo
    Bautista-Cruz, Angelica
    Morales, Isidro
    Martinez-Gutierrez, Gabino A.
    INTERCIENCIA, 2021, 46 (05) : 204 - 210
  • [43] The Effect of Nitrogen Fertilizer Based on Pocket Fertigation on Growth and Production of Tomato (Solanum lycopersicum L.)
    Nugroho, Bayu Dwi Apri
    Arif, Chusnul
    Wibisono, Yusuf
    Ansari, Andrianto
    AGRIVITA, 2023, 45 (03): : 443 - 455
  • [44] Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces
    Terzopoulos, P. J.
    Bebeli, P. J.
    SCIENTIA HORTICULTURAE, 2010, 126 (02) : 138 - 144
  • [45] Effect of organic fertilizers on the response of tomato (Solanum lycopersicum L.)
    Reyes-Perez, Juan Jose
    Luna Murillo, Ricardo Augusto
    Reyes Bermeo, Mariana del Rocio
    Francisco, Vicente
    Moran, Vazquez
    Zambrano Burgos, Darwin
    Torres Rodriguez, Juan Antonio
    REVISTA DE LA FACULTAD DE AGRONOMIA DE LA UNIVERSIDAD DEL ZULIA, 2018, 35 (01): : 26 - 39
  • [46] Response of Tomato (Solanum lycopersicum L.) to Application of Potassium and Triacontanol
    Khan, M. M. A.
    Bhardwaj, G.
    Naeem, M.
    Moinuddin
    Mohammad, F.
    Singh, M.
    Nasir, S.
    Idrees, M.
    XI INTERNATIONAL SYMPOSIUM ON THE PROCESSING TOMATO, 2009, 823 : 199 - 207
  • [47] Influence of preharvest application of fungicides on the postharvest quality of tomato (Solanum lycopersicum L.)
    Dominguez, Irene
    Ferreres, Federico
    Pascual del Riquelme, Fernando
    Fonta, Rafael
    Gil, Maria I.
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2012, 72 : 1 - 10
  • [48] Effects of Oxygenated Irrigation on Root Morphology, Fruit Yield, and Water–Nitrogen Use Efficiency of Tomato (Solanum lycopersicum L.)
    Zhe Zhang
    Runya Yang
    Zhenhua Zhang
    Yajun Geng
    Jinjin Zhu
    Junna Sun
    Journal of Soil Science and Plant Nutrition, 2023, 23 : 5582 - 5593
  • [49] Biodegradable mulch performed comparably to polyethylene in high tunnel tomato (Solanum lycopersicum L.) production
    Cowan, Jeremy S.
    Miles, Carol A.
    Andrews, Preston K.
    Inglis, Debra A.
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2014, 94 (09) : 1854 - 1864
  • [50] Comparison of Leaf and Fruit Metabolism in Two Tomato (Solanum lycopersicum L.) Genotypes Varying in Total Soluble Solids
    Luengwilai, Kietsuda
    Fiehn, Oliver E.
    Beckles, Diane M.
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2010, 58 (22) : 11790 - 11800