A fast proximal iteratively reweighted nuclear norm algorithm for nonconvex low-rank matrix minimization problems

被引:4
作者
Ge, Zhili [1 ]
Zhang, Xin [2 ]
Wu, Zhongming [3 ]
机构
[1] Nanjing Normal Univ Special Educ, Sch Math & Informat Sci, Nanjing 210038, Peoples R China
[2] Suqian Coll, Sch Arts & Sci, Suqian 223800, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-rank minimization; Nonconvex optimization; Proximal iteratively reweighted method; Extrapolation; Convergence analysis; VARIABLE SELECTION; GRADIENT ALGORITHM; REGRESSION; CONVERGENCE;
D O I
10.1016/j.apnum.2022.04.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a fast proximal iteratively reweighted nuclear norm algorithm with extrapolation for solving a class of nonconvex low-rank matrix minimization problems. The proposed method incorporates two different extrapolation steps with respect to the previous iterations into the backward proximal step and the forward gradient step of the classic proximal iteratively reweighted method. We prove that the proposed method generates a convergent subsequence under general parameter constraints, and that any limit point is a stationary point of the problem. Furthermore, we prove that if the objective function satisfies the Kurdyka-Lojasiewicz property, the algorithm is globally convergent to a stationary point of the considered problem. Finally, we perform numerical experiments on a practical matrix completion problem with both synthetic and real data, the results of which demonstrate the efficiency and superior performance of the proposed algorithm. (C) 2022 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 86
页数:21
相关论文
共 46 条
[1]  
[Anonymous], 2011, P AAAI C ART INT
[2]   Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods [J].
Attouch, Hedy ;
Bolte, Jerome ;
Svaiter, Benar Fux .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :91-129
[3]   Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality [J].
Attouch, Hedy ;
Bolte, Jerome ;
Redont, Patrick ;
Soubeyran, Antoine .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) :438-457
[4]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[5]   Proximal alternating linearized minimization for nonconvex and nonsmooth problems [J].
Bolte, Jerome ;
Sabach, Shoham ;
Teboulle, Marc .
MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) :459-494
[6]   An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions [J].
Bot, Radu Ioan ;
Csetnek, Erno Robert ;
Laszlo, Szilard Csaba .
EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2016, 4 (01) :3-25
[7]   Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-rank Matrix Decomposition [J].
Cabral, Ricardo ;
De la Torre, Fernando ;
Costeira, Joao P. ;
Bernardino, Alexandre .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :2488-2495
[8]   Exact Matrix Completion via Convex Optimization [J].
Candes, Emmanuel J. ;
Recht, Benjamin .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) :717-772
[9]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[10]   Reduced rank regression via adaptive nuclear norm penalization [J].
Chen, Kun ;
Dong, Hongbo ;
Chan, Kung-Sik .
BIOMETRIKA, 2013, 100 (04) :901-920