NON-MARKOVIANITY OF GEOMETRICAL QUDIT DECOHERENCE

被引:3
作者
Siudzinska, Katarzyna [1 ]
机构
[1] Nicolaus Copernicus Univ, Inst Phys, Fac Phys Astron & Informat, Ul Grudziadzka 5-7, PL-87100 Torun, Poland
关键词
foundations of quantum mechanics; geometrical quantum mechanics; master equation; quantum channels; QUANTUM-MECHANICS; DYNAMICAL SEMIGROUPS; STATES; SYSTEMS;
D O I
10.1016/S0034-4877(18)30007-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the following paper, we generalize the geometrical framework of qubit decoherence to higher dimensions. The quantum mixed state is represented by the probability distribution which is the Miller function on the projective Hilbert space. The Markovian master equation for density operators turns out to be equivalent to the Fokker-Planck equation for quantum probability distributions. Several examples are analyzed, featuring different generalizations of the Pauli channel.
引用
收藏
页码:361 / 372
页数:12
相关论文
共 24 条
  • [1] A GEOMETRIC APPROACH TO QUANTUM-MECHANICS
    ANANDAN, J
    [J]. FOUNDATIONS OF PHYSICS, 1991, 21 (11) : 1265 - 1284
  • [2] [Anonymous], 1996, FOKKER PLANCK EQUATI
  • [3] Ashtekar A., 1999, Geometrical Formulation of Quantum Me- chanics, P23, DOI [10.1007/978-1-4612-1422-9_3, DOI 10.1007/978-1-4612-1422-9_3]
  • [4] Bengtsson I., 2017, GEOMETRY QUANTUM STA, DOI DOI 10.1017/9781139207010
  • [5] Bloch vectors for qudits
    Bertlmann, Reinhold A.
    Krammer, Philipp
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (23)
  • [6] Geometric quantum mechanics
    Brody, DC
    Hughston, LP
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2001, 38 (01) : 19 - 53
  • [7] RIEMANNIAN STRUCTURE ON STATES OF QUANTUM-LIKE SYSTEMS
    CANTONI, V
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 56 (02) : 189 - 193
  • [8] Carinena J. F., 2015, Geometry from Dynamics: Classical and Quantum
  • [9] Chruscinski D., 2004, GEOMETRIC PHASES CLA
  • [10] Generalized Pauli channels and a class of non-Markovian quantum evolution
    Chruscinski, Dariusz
    Siudzinska, Katarzyna
    [J]. PHYSICAL REVIEW A, 2016, 94 (02)