Entanglement spectroscopy on a quantum computer

被引:49
作者
Johri, Sonika [1 ]
Steiger, Damian S. [2 ]
Troyer, Matthias [2 ,3 ]
机构
[1] Intel Corp, Intel Labs, Hillsboro, OR 97124 USA
[2] ETH, Theoret Phys, CH-8093 Zurich, Switzerland
[3] Microsoft Res, Quantum Architectures & Computat Grp, Redmond, WA 98052 USA
基金
瑞士国家科学基金会;
关键词
SIMULATION; SYSTEMS; ENTROPY;
D O I
10.1103/PhysRevB.96.195136
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a quantum algorithm to compute the entanglement spectrum of arbitrary quantum states. The interesting universal part of the entanglement spectrum is typically contained in the largest eigenvalues of the density matrix which can be obtained from the lower Renyi entropies through the Newton-Girard method. Obtaining the p largest eigenvalues (lambda(1) > lambda(2) ... > lambda(p)) requires a parallel circuit depth of O[ p(lambda(1)/lambda(p))(p)] and O[p log( N)] qubits where up to p copies of the quantum state defined on a Hilbert space of size N are needed as the input. We validate this procedure for the entanglement spectrum of the topologically ordered Laughlin wave function corresponding to the quantum Hall state at filling factor nu = 1/ 3. Our scaling analysis exposes the tradeoffs between time and number of qubits for obtaining the entanglement spectrum in the thermodynamic limit using finite-size digital quantum computers. We also illustrate the utility of the second Renyi entropy in predicting a topological phase transition and in extracting the localization length in a many-body localized system.
引用
收藏
页数:7
相关论文
共 58 条
[1]   The Power of Quantum Systems on a Line [J].
Aharonov, Dorit ;
Gottesman, Daniel ;
Irani, Sandy ;
Kempe, Julia .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (01) :41-65
[2]   Entanglement Spectrum of the Two-Dimensional Bose-Hubbard Model [J].
Alba, Vincenzo ;
Haque, Masudul ;
Laeuchli, Andreas M. .
PHYSICAL REVIEW LETTERS, 2013, 110 (26)
[3]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[4]   Adiabatic Quantum Simulation of Quantum Chemistry [J].
Babbush, Ryan ;
Love, Peter J. ;
Aspuru-Guzik, Alan .
SCIENTIFIC REPORTS, 2014, 4
[5]   Entanglement entropy scaling in solid-state spin arrays via capacitance measurements [J].
Banchi, Leonardo ;
Bayat, Abolfazl ;
Bose, Sougato .
PHYSICAL REVIEW B, 2016, 94 (24)
[6]   Unbounded Growth of Entanglement in Models of Many-Body Localization [J].
Bardarson, Jens H. ;
Pollmann, Frank ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (01)
[7]   Area laws in a many-body localized state and its implications for topological order [J].
Bauer, Bela ;
Nayak, Chetan .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[8]  
Brassard G., 2002, AMS Contemporary Mathematics Series, V305, P53, DOI DOI 10.1090/CONM/305/05215
[9]   Bounds on the speed of information propagation in disordered quantum spin chains [J].
Burrell, Christian K. ;
Osborne, Tobias J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[10]   Entanglement spectrum in one-dimensional systems [J].
Calabrese, Pasquale ;
Lefevre, Alexandre .
PHYSICAL REVIEW A, 2008, 78 (03)