Sufficient LMI conditions for reduced-order multi-objective H2/H∞ control of LTI systems

被引:24
作者
Hilhorst, Gijs [1 ,2 ]
Pipeleers, Goele [2 ]
Michiels, Wim [3 ]
Swevers, Jan [2 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Mech Engn, B-3001 Louvain, Belgium
[3] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Louvain, Belgium
关键词
Linear time-invariant systems; H-2/H-infinity performance; Reduced-order control; Multi-objective control; Linear matrix inequalities; OUTPUT-FEEDBACK CONTROL; H-INFINITY CONTROL; COMPUTATIONAL-COMPLEXITY; OPTIMIZATION;
D O I
10.1016/j.ejcon.2015.01.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel projection lemma based linear matrix inequality (LMI) framework to design reduced-order multi-objective H-2/H-infinity controllers for linear time-invariant systems. This framework relies on a set of full-order H-2/H-infinity controllers, which are used as parameters in sufficient LMIs for the reduced-order controller design. Continuous-time and discrete-time controller designs are treated in a unified fashion. It is theoretically and numerically demonstrated that the approach allows the computation of reduced-order controllers that are potentially less conservative than full-order designs resulting from well-known LMI approaches. Various comparisons with existing reduced-order controller design approaches illustrate the potential of the proposed framework of sufficient LMIs. (C) 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 45 条
[1]   LMI Relaxations for Reduced-Order Robust H∞ Control of Continuous-Time Uncertain Linear Systems [J].
Agulhari, Cristiano M. ;
Oliveira, Ricardo C. L. F. ;
Peres, Pedro L. D. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (06) :1532-1537
[2]   Static output feedback control of polytopic systems using polynomial Lyapunov functions [J].
Agulhari, Cristiano M. ;
Oliveira, Ricardo C. L. F. ;
Peres, Pedro L. D. .
49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, :6894-6901
[3]  
Agulhari CM, 2010, P AMER CONTR CONF, P4677
[4]  
[Anonymous], 1994, Studies in Applied Mathematics Series)
[5]  
Arzelier D., 2011, INT C CONT OPT IND A
[6]  
Arzelier D, 2010, P AMER CONTR CONF, P4683
[7]   A survey of computational complexity results in systems and control [J].
Blondel, VD ;
Tsitsiklis, JN .
AUTOMATICA, 2000, 36 (09) :1249-1274
[8]  
Bosche J, 2005, IEEE INTL CONF CONTR, P400
[9]  
Boyd S., 2004, CONVEX OPTIMIZATION
[10]   Gain-scheduled dynamic output feedback control for discrete-time LPV systems [J].
De Caigny, J. ;
Camino, J. F. ;
Oliveira, R. C. L. F. ;
Peres, P. L. D. ;
Swevers, J. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2012, 22 (05) :535-558