Pinpointing optimized air quality model performance over the Beijing-Tianjin-Hebei region: Mosaic approach

被引:6
|
作者
Wang, Kun [1 ,2 ]
Tong, Yali [1 ,2 ]
Gao, Jiajia [1 ]
Zhang, Xiaoxi [1 ]
Zuo, Penglai [1 ]
Wang, Chenlong [1 ]
Wu, Kai [3 ]
Yang, Siyuan [4 ]
机构
[1] Beijing Municipal Inst Labour Protect, Dept Air Pollut Control, Beijing 100054, Peoples R China
[2] Ocean Univ China, Minist Educ, Key Lab Marine Environm Sci & Ecol, Qingdao 266100, Peoples R China
[3] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
[4] Beijing Inst Metrol, Beijing 100012, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Land surface model; Mosaic approach; PM2.5; WRF-CMAQ; LAND-SURFACE HETEROGENEITY; URBAN CANOPY MODEL; PART I; IMPACT; WIND; HAZE; IMPLEMENTATION; SIMULATION; POLLUTION; SCHEMES;
D O I
10.1016/j.apr.2021.101207
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mosaic approach, with certain number of tiles representing land use (LU) types in each grid cell, had been implemented into WRF-Noah model. Previous studies found mosaic approach had a better performance on meteorological parameters than only considering dominant LU in dominant approach. In this study, the impacts of mosaic approach on meteorological parameters and air quality were investigated in WRF-CMAQ over Beijing-Tianjin-Hebei (BTH) region in China in 2020. Results showed that mosaic approach improved the simulation results of WS10 (surface wind speed at 10 m), T2 (temperature at 2 m), and RH (relative humidity) especially in nighttime in winter and were available for all stations with different percent of urban area. "MOS_TOPO" scenario, which coupled with mosaic approach and "topo-wind" schemes, obtained best simulation results of WS10 and T2 in January among six scenarios, with the lower average Root Mean Square Error of WS10 (1.18 m/s) and Mean Bias of T2 (0.55 degrees C) for all stations. Meanwhile, mosaic approach obtained lower vertical bar NMB vertical bar of PM2.5 than dominant approach in more than 69% cities in BTH region. Cities in southern Hebei province, especially Xingtai city, were identified as the most sensitive area for PM2.5 simulation affected by mosaic approach. Although the mosaic approach has improved the simulation results of meteorological parameters, especially the nighttime simulation results of WS10, there is still some deviation in the simulation results of PM2.5. Accurate emission inventory, suitable physics option in numerical weather model and rational chemical mechanism in air quality model are the important factors for WRF-CMAQ.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Aerosol effects on the three-dimensional structure of organized precipitation systems over Beijing-Tianjin-Hebei region in summer
    Xi, Jing
    Li, Rui
    Fan, Xiaoye
    Wang, Yu
    ATMOSPHERIC RESEARCH, 2024, 298
  • [32] Federated Bayesian network approach for cross-regional air pollution classification: a case study of the Beijing-Tianjin-Hebei region
    Bian, Chao
    Huang, Guangqiu
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (07)
  • [33] Contributions of residential coal combustion to the air quality in Beijing-Tianjin-Hebei (BTH), China: a case study
    Li, Xia
    Wu, Jiarui
    Elser, Miriam
    Feng, Tian
    Cao, Junji
    El-Haddad, Imad
    Huang, Rujin
    Tie, Xuexi
    Prevot, Andre S. H.
    Li, Guohui
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (14) : 10675 - 10691
  • [34] Production potential and yield gaps of summer maize in the Beijing-Tianjin-Hebei Region
    Wang Tao
    Lu Changhe
    Yu Bohua
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2011, 21 (04) : 677 - 688
  • [35] Economic Transformation in the Beijing-Tianjin-Hebei Region: Is It Undergoing the Environmental Kuznets Curve?
    Xiong, Lichun
    Yu, Chang
    de Jong, Martin
    Wang, Fengting
    Cheng, Baodong
    SUSTAINABILITY, 2017, 9 (05)
  • [36] Air Quality Characteristics and Their Natural and Socioeconomic Drivers in Beijing-Tianjin-Hebei Economic Zone, Northern China
    Zhang, Xiaoxue
    Li, Shuang
    Xia, Chengcheng
    CHIANG MAI JOURNAL OF SCIENCE, 2022, 49 (06): : 1509 - 1529
  • [37] A study on the trends of vehicular emissions in the Beijing-Tianjin-Hebei (BTH) region, China
    Lang, Jianlei
    Cheng, Shuiyuan
    Wei, Wei
    Zhou, Ying
    Wei, Xiao
    Chen, Dongsheng
    ATMOSPHERIC ENVIRONMENT, 2012, 62 : 605 - 614
  • [38] The Impact of Wind Power Development on Haze in Beijing-Tianjin-Hebei region of China
    Liu, Liming
    Xie, Liye
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND ENGINEERING INNOVATION, 2015, 12 : 1344 - 1346
  • [39] Characteristics of ozone and its relationship with meteorological factors in Beijing-Tianjin-Hebei Region
    Wang, Mei
    Zheng, You-Fei
    Liu, Yan-Ju
    Li, Qiao-Ping
    Ding, Yi-Hui
    Zhongguo Huanjing Kexue/China Environmental Science, 2019, 39 (07): : 2689 - 2698
  • [40] Nonstationary bayesian modeling of precipitation extremes in the Beijing-Tianjin-Hebei Region, China
    Song, Xiaomeng
    Zou, Xianju
    Mo, Yuchen
    Zhang, Jianyun
    Zhang, Chunhua
    Tian, Yimin
    ATMOSPHERIC RESEARCH, 2020, 242 (242)