Quantum compass model on the square lattice

被引:112
作者
Dorier, J [1 ]
Becca, F
Mila, F
机构
[1] Ecole Polytech Fed Lausanne, Inst Theoret Phenomenes Phys, CH-1015 Lausanne, Switzerland
[2] INFM Democritos, Natl Simulat Ctr, I-34014 Trieste, Italy
[3] Int Sch Adv Studies SISSA, I-34014 Trieste, Italy
关键词
D O I
10.1103/PhysRevB.72.024448
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using exact diagonalizations, Green's function Monte Carlo simulations and high-order perturbation theory, we study the low-energy properties of the two-dimensional spin-1/2 compass model on the square lattice defined by the Hamiltonian H=-Sigma(r)(J(x)sigma(x)(r)sigma(x)(r+ex)+J(z)sigma(z)(r)sigma(z)(r+ez)). When J(x)not equal J(z), we show that, on clusters of dimension L x L, the low-energy spectrum consists of 2(L) states which collapse onto each other exponentially fast with L, a conclusion that remains true arbitrarily close to J(x)=J(z). At that point, we show that an even larger number of states collapse exponentially fast with L onto the ground state, and we present numerical evidence that this number is precisely 2 x 2(L). We also extend the symmetry analysis of the model to arbitrary spins and show that the twofold degeneracy of all eigenstates remains true for arbitrary half-integer spins but does not apply to integer spins, in which cases the eigenstates are generically nondegenerate, a result confirmed by exact diagonalizations in the spin-1 case. Implications for Mott insulators and Josephson junction arrays are briefly discussed.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Quantum entanglement and quantum phase transition for the Ising model on a two-dimension square lattice [J].
Xu, Yu-Liang ;
Kong, Xiang-Mu ;
Liu, Zhong-Qiang ;
Wang, Chun-Yang .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 446 :217-223
[22]   Exact Properties of the Quantum Compass Model [J].
Brzezicki, Wojciech .
LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XV: FIFTEENTH TRAINING COURSE IN THE PHYSICS OF STRONGLY CORRELATED SYSTEMS, 2011, 1419 :261-265
[23]   Widely existing mixed phase structure of the quantum dimer model on a square lattice [J].
Yan, Zheng ;
Zhou, Zheng ;
Syljuasen, Olav F. ;
Zhang, Junhao ;
Yuan, Tianzhong ;
Lou, Jie ;
Chen, Yan .
PHYSICAL REVIEW B, 2021, 103 (09)
[24]   Benchmarking variational quantum eigensolvers for the square-octagon-lattice Kitaev model [J].
Li, Andy C. Y. ;
Alam, M. Sohaib ;
Iadecola, Thomas ;
Jahin, Ammar ;
Job, Joshua ;
Kurkcuoglu, Doga Murat ;
Li, Richard ;
Orth, Peter P. ;
Ozguler, A. Baris ;
Perdue, Gabriel N. ;
Tubman, Norm M. .
PHYSICAL REVIEW RESEARCH, 2023, 5 (03)
[25]   Doping quantum dimer models on the square lattice [J].
Poilblanc, Didier ;
Alet, Fabien ;
Becca, Federico ;
Ralko, Arnaud ;
Trousselet, Fabien ;
Mila, Frederic .
PHYSICAL REVIEW B, 2006, 74 (01)
[26]   Thermodynamics of a frustrated quantum magnet on a square lattice [J].
Povarov, K. Yu ;
Bhartiya, V. K. ;
Yan, Z. ;
Zheludev, A. .
PHYSICAL REVIEW B, 2019, 99 (02)
[27]   FRACTIONAL QUANTUM HALL STATES ON A SQUARE LATTICE [J].
KLIROS, GS ;
DAMBRUMENIL, N .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (23) :4241-4247
[28]   Quantum dynamics and entanglement of spins on a square lattice [J].
Christensen, N. B. ;
Ronnow, H. M. ;
McMorrow, D. F. ;
Harrison, A. ;
Perring, T. G. ;
Enderle, M. ;
Coldea, R. ;
Regnault, L. P. ;
Aeppli, G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (39) :15264-15269
[29]   Quantum codes for quantum simulation of fermions on a square lattice of qubits [J].
Steudtner, Mark ;
Wehner, Stephanie .
PHYSICAL REVIEW A, 2019, 99 (02)
[30]   Ordering and excitation in orbital compass model on a checkerboard lattice [J].
Nasu, Joji ;
Todo, Synge ;
Ishihara, Sumio .
PHYSICAL REVIEW B, 2012, 85 (20)