Doubling the Size of Quantum Simulators by Entanglement Forging

被引:110
作者
Eddins, Andrew [1 ]
Motta, Mario [1 ]
Gujarati, Tanvi P. [1 ]
Bravyi, Sergey [2 ]
Mezzacapo, Antonio [2 ]
Hadfield, Charles [2 ]
Sheldon, Sarah [1 ]
机构
[1] IBM Quantum, Almaden Res Ctr, San Jose, CA 95120 USA
[2] IBM Quantum, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
来源
PRX QUANTUM | 2022年 / 3卷 / 01期
关键词
D O I
10.1103/PRXQuantum.3.010309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum computers are promising for simulations of chemical and physical systems, but the limited capabilities of today's quantum processors permit only small, and often approximate, simulations. Here we present a method, classical entanglement forging, that harnesses classical resources to capture quantum correlations and double the size of the system that can be simulated on quantum hardware. Shifting some of the computation to classical postprocessing allows us to represent ten spin orbitals of the water molecule on five qubits of an IBM Quantum processor in the most accurate variational simulation of the H2O ground-state energy using quantum hardware to date. We discuss conditions for applicability of classical entanglement forging and present a roadmap for scaling to larger problems.
引用
收藏
页数:15
相关论文
共 48 条
[1]  
Aleksandrowicz G., 2019, METHOD PRODUCING HUM
[2]  
[Anonymous], 2018, NIST Computational Chemistry Comparison and Benchmark Database
[3]  
NIST Standard Reference Database Number 101
[4]  
Release 19, DOI DOI 10.18434/T47C7Z
[5]  
[Anonymous], 2020, IBMQ DUBLIN V100 135
[6]  
Arrasmith A., 2020, Operator sampling for shot-frugal optimization in variational algorithms
[7]   Quantum Divide and Compute: Hardware Demonstrations and Noisy Simulations [J].
Ayral, Thomas ;
Le Regent, Francois-Marie ;
Saleem, Zain ;
Alexeev, Yuri ;
Suchara, Martin .
2020 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2020), 2020, :138-140
[8]   Hybrid Quantum-Classical Approach to Correlated Materials [J].
Bauer, Bela ;
Wecker, Dave ;
Millis, Andrew J. ;
Hastings, Matthew B. ;
Troyer, Matthias .
PHYSICAL REVIEW X, 2016, 6 (03)
[9]  
Bermejo-Vega J, 2014, QUANTUM INF COMPUT, V14, P181
[10]  
Bravyi S., ARXIV200614044