Homoclinic snaking in the discrete Swift-Hohenberg equation

被引:11
作者
Kusdiantara, R. [1 ,2 ]
Susanto, H. [1 ]
机构
[1] Univ Essex, Dept Math Sci, Wivenhoe Pk, Colchester CO4 3SQ, Essex, England
[2] Inst Teknol Bandung, Ctr Math Modelling & Simulat, 1st Floor,Labtek 3,Jl Ganesha 10, Bandung 40132, Indonesia
关键词
LOCALIZED PATTERNS; EXPONENTIAL ASYMPTOTICS; SOLITONS; SYSTEMS; LATTICE; STATES; BIFURCATIONS; INSTABILITY; LADDERS; SNAKES;
D O I
10.1103/PhysRevE.96.062214
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the discrete Swift-Hohenberg equation with cubic and quintic nonlinearity, obtained from discretizing the spatial derivatives of the Swift-Hohenberg equation using central finite differences. We investigate the discretization effect on the bifurcation behavior, where we identify three regions of the coupling parameter, i.e., strong, weak, and intermediate coupling. Within the regions, the discrete Swift-Hohenberg equation behaves either similarly or differently from the continuum limit. In the intermediate coupling region, multiple Maxwell points can occur for the periodic solutions and may cause irregular snaking and isolas. Numerical continuation is used to obtain and analyze localized and periodic solutions for each case. Theoretical analysis for the snaking and stability of the corresponding solutions is provided in the weak coupling region.
引用
收藏
页数:14
相关论文
共 43 条
[1]  
[Anonymous], 2001, Applied Analysis
[2]  
[Anonymous], INTERDISCIPLINARY AP
[3]  
[Anonymous], 1983, SIGNALS SYSTEMS
[4]   To Snake or Not to Snake in the Planar Swift-Hohenberg Equation [J].
Avitabile, Daniele ;
Lloyd, David J. B. ;
Burke, John ;
Knobloch, Edgar ;
Sandstede, Bjoern .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (03) :704-733
[5]   Homoclinic Snaking in a Semiconductor-Based Optical System [J].
Barbay, S. ;
Hachair, X. ;
Elsass, T. ;
Sagnes, I. ;
Kuszelewicz, R. .
PHYSICAL REVIEW LETTERS, 2008, 101 (25)
[6]   SNAKES, LADDERS, AND ISOLAS OF LOCALIZED PATTERNS [J].
Beck, Margaret ;
Knobloch, Juergen ;
Lloyd, David J. B. ;
Sandstede, Bjoern ;
Wagenknecht, Thomas .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) :936-972
[7]   NONADIABATIC EFFECTS IN CONVECTION [J].
BENSIMON, D ;
SHRAIMAN, BI ;
CROQUETTE, V .
PHYSICAL REVIEW A, 1988, 38 (10) :5461-5464
[8]   Localized periodic patterns for the non-symmetric generalized Swift-Hohenberg equation [J].
Budd, CJ ;
Kuske, R .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 208 (1-2) :73-95
[9]   Asymptotics of cellular buckling close to the Maxwell load [J].
Budd, CJ ;
Hunt, GW ;
Kuske, R .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2016) :2935-2964
[10]   Homoclinic snaking: Structure and stability [J].
Burke, John ;
Knobloch, Edgar .
CHAOS, 2007, 17 (03)