ON STRONGLY COPURE FLAT MODULES AND COPURE FLAT DIMENSIONS

被引:8
作者
Fu, Xianhui [1 ]
Ding, Nanqing [2 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210008, Peoples R China
基金
中国国家自然科学基金;
关键词
Copure flat dimension; Flat dimension; (Pre)Cover; (Pre)Envelope; Strongly copure cotorsion module; Strongly copure flat module; INJECTIVE-MODULES; CHARACTER MODULES; COHERENT RINGS; TORSION-FREE; COVERS; RESOLVENTS;
D O I
10.1080/00927870903428262
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a left coherent ring. We first prove that a right R-module M is strongly copure flat if and only if Ext(i) (M, C) = 0 for all flat cotorsion right R-modules C and i >= 1. Then we define and investigate copure flat dimensions of left coherent rings. Finally, we give some new characterizations of n-FC rings.
引用
收藏
页码:4531 / 4544
页数:14
相关论文
共 23 条
[1]  
Anderson F. W., 1974, Rings and Categories of Modules
[2]   Left cotorsion rings [J].
Asensio, PAG ;
Herzog, I .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :303-309
[3]   All modules have flat covers [J].
Bican, L ;
El Bashir, R ;
Enochs, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :385-390
[4]   FLAT AND PROJECTIVE CHARACTER MODULES [J].
CHEATHAM, TJ ;
STONE, DR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (02) :175-177
[5]   RINGS WHICH HAVE FLAT INJECTIVE MODULES [J].
COLBY, RR .
JOURNAL OF ALGEBRA, 1975, 35 (1-3) :239-252
[6]   On copure flat modules and flat resolvents [J].
Ding, NQ ;
Chen, JL .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (03) :1071-1081
[7]   Coherent rings with finite self-FP-injective dimension [J].
Ding, NQ ;
Chen, JL .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (09) :2963-2980
[8]   Gorenstein flat covers of modules over Gorenstein rings [J].
Enochs, E ;
Xu, JZ .
JOURNAL OF ALGEBRA, 1996, 181 (01) :288-313
[9]  
Enochs E. E., 1993, COMMENT MATH U CAROL, V34, P203
[10]  
Enochs E.E., 1991, QUAESTIONES MATH, V14, P401, DOI [DOI 10.1080/16073606.1991.9631658, 10.1080/16073606.1991.9631658]