ON STRONGLY COPURE FLAT MODULES AND COPURE FLAT DIMENSIONS

被引:8
作者
Fu, Xianhui [1 ]
Ding, Nanqing [2 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210008, Peoples R China
基金
中国国家自然科学基金;
关键词
Copure flat dimension; Flat dimension; (Pre)Cover; (Pre)Envelope; Strongly copure cotorsion module; Strongly copure flat module; INJECTIVE-MODULES; CHARACTER MODULES; COHERENT RINGS; TORSION-FREE; COVERS; RESOLVENTS;
D O I
10.1080/00927870903428262
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a left coherent ring. We first prove that a right R-module M is strongly copure flat if and only if Ext(i) (M, C) = 0 for all flat cotorsion right R-modules C and i >= 1. Then we define and investigate copure flat dimensions of left coherent rings. Finally, we give some new characterizations of n-FC rings.
引用
收藏
页码:4531 / 4544
页数:14
相关论文
共 23 条
  • [1] Anderson F. W., 1974, Rings and Categories of Modules
  • [2] Left cotorsion rings
    Asensio, PAG
    Herzog, I
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 303 - 309
  • [3] All modules have flat covers
    Bican, L
    El Bashir, R
    Enochs, E
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 385 - 390
  • [4] FLAT AND PROJECTIVE CHARACTER MODULES
    CHEATHAM, TJ
    STONE, DR
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (02) : 175 - 177
  • [5] RINGS WHICH HAVE FLAT INJECTIVE MODULES
    COLBY, RR
    [J]. JOURNAL OF ALGEBRA, 1975, 35 (1-3) : 239 - 252
  • [6] On copure flat modules and flat resolvents
    Ding, NQ
    Chen, JL
    [J]. COMMUNICATIONS IN ALGEBRA, 1996, 24 (03) : 1071 - 1081
  • [7] Coherent rings with finite self-FP-injective dimension
    Ding, NQ
    Chen, JL
    [J]. COMMUNICATIONS IN ALGEBRA, 1996, 24 (09) : 2963 - 2980
  • [8] Gorenstein flat covers of modules over Gorenstein rings
    Enochs, E
    Xu, JZ
    [J]. JOURNAL OF ALGEBRA, 1996, 181 (01) : 288 - 313
  • [9] Enochs E. E., 1993, COMMENT MATH U CAROL, V34, P203
  • [10] Enochs E.E., 1991, QUAESTIONES MATH, V14, P401, DOI [DOI 10.1080/16073606.1991.9631658, 10.1080/16073606.1991.9631658]