Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis

被引:153
作者
Feng, Yongqiang [1 ]
Wang, Xiao [1 ]
Huang, Jianfeng [1 ]
Dong, Peipei [1 ]
Ji, Jing [2 ]
Li, Jie [3 ]
Cao, Liyun [1 ]
Feng, Liangliang [1 ]
Jin, Peng [2 ]
Wang, Chunru [3 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Shaanxi Key Lab Green Preparat & Functionalizat I, Key Lab Auxiliary Chem & Technol Chem Ind,Minist, Xian 710021, Peoples R China
[2] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China
[3] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Layered double hydroxides; Fullerene quantum dot; Electrocatalyst; Overall water splitting; Urea oxidation reaction; HYDROGEN EVOLUTION; BIFUNCTIONAL ELECTROCATALYST; ENERGY-EFFICIENT; C-60; MOLECULES; GRAPHENE; CATALYSTS; NANOSTRUCTURES; PERFORMANCE; NANOBELTS; OXIDATION;
D O I
10.1016/j.cej.2020.124525
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The design and construction of noble-metal-free electrocatalysts with superior activity, high efficiency and robust stability is still a big challenge for overall water and urea splitting. Herein, a novel hybrid electrocatalyst comprising fullerene quantum dot (FQD)-decorated CoNi layered double hydroxides (CoNi-LDH) nanosheet arrays anchored on porous Ni foam (NF) is elaborately fabricated. Beneficial from the synergetic effect between FQD and CoNi-LDH, the obtained FQD/CoNi-LDH/NF exhibits superior electrocatalytic activity for hydrogen and oxygen evolution as well as urea oxidation under ambient atmosphere. Impressively, to drive a current density of 10 mA cm(-2), it requires cell voltages of only 1.59 and 1.45 V for overall water and urea electrolysis, respectively, in a two-electrode electrolyzer consisting of FQD/CoNi-LDH/NF as both anode and cathode. Furthermore, this catalyst also displays outstanding reaction kinetics and favorable catalytic stability. Both experimental and density functional theory (DFT) calculation results demonstrate that the charge transfer from FQD to CoNi-LDH could account for the excellent catalytic performance of the newly-synthesized catalyst, and the decorated FQD finely modulates the electronic structure of CoNi-LDH, favoring the adsorption of active hydrogen atom, and thus promote the catalytic process. The present work would provide useful guidance for designing and developing multifunctional and efficient electrocatalysts for hydrogen production.
引用
收藏
页数:13
相关论文
共 62 条
[1]   Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting [J].
Arif, Muhammad ;
Yasin, Ghulam ;
Shakeel, Muhammad ;
Mushtaq, Muhammad Asim ;
Ye, Wen ;
Fang, Xiaoyu ;
Ji, Shengfu ;
Yan, Dongpeng .
MATERIALS CHEMISTRY FRONTIERS, 2019, 3 (03) :520-531
[2]   Synthesis of carbon quantum dot-doped NiCoP and enhanced electrocatalytic hydrogen evolution ability and mechanism [J].
Bao, Ting ;
Song, Limin ;
Zhang, Shujuan .
CHEMICAL ENGINEERING JOURNAL, 2018, 351 :189-194
[3]   Rupturing C60 Molecules into Graphene-Oxide-like Quantum Dots: Structure, Photoluminescence, and Catalytic Application [J].
Chen, Guanxiong ;
Zhuo, Zhiwen ;
Ni, Kun ;
Kim, Na Yeon ;
Zhao, Yuan ;
Chen, Zongwei ;
Xiang, Bin ;
Yang, Lihua ;
Zhang, Qun ;
Lee, Zonghoon ;
Wu, Xiaojun ;
Ruoff, Rodney S. ;
Zhu, Yanwu .
SMALL, 2015, 11 (39) :5296-5304
[4]   Structural Characterisation of Complex Layered Double Hydroxides and TGA-GC-MS Study on Thermal Response and Carbonate Contamination in Nitrate- and Organic-Exchanged Hydrotalcites [J].
Conterosito, Eleonora ;
Palin, Luca ;
Antonioli, Diego ;
Viterbo, Davide ;
Mugnaioli, Enrico ;
Kolb, Ute ;
Perioli, Luana ;
Milanesio, Marco ;
Gianotti, Valentina .
CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (42) :14975-14986
[5]   Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation [J].
Ding, Rui ;
Qi, Li ;
Jia, Mingjun ;
Wang, Hongyu .
NANOSCALE, 2014, 6 (03) :1369-1376
[6]   Eutectic-Derived Mesoporous Ni-Fe-O Nanowire Network Catalyzing Oxygen Evolution and Overall Water Splitting [J].
Dong, Chaoqun ;
Kou, Tianyi ;
Gao, Hui ;
Peng, Zhangquan ;
Zhang, Zhonghua .
ADVANCED ENERGY MATERIALS, 2018, 8 (05)
[7]   Electrochemically generated fluorescent fullerene[60] nanoparticles as a new and viable bioimaging platform [J].
E, Yifeng ;
Bai, Linling ;
Fan, Louzhen ;
Han, Mei ;
Zhang, Xiaoyan ;
Yang, Shihe .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (03) :819-823
[8]   Electrocatalysts for hydrogen evolution reaction [J].
Eftekhari, Ali .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (16) :11053-11077
[9]   Dual Tuning of Ni-Co-A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution [J].
Fang, Zhiwei ;
Peng, Lele ;
Qian, Yumin ;
Zhang, Xiao ;
Xie, Yujun ;
Cha, Judy J. ;
Yu, Guihua .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (15) :5241-5247
[10]   Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells [J].
Gao, Feng ;
Zhao, Yang ;
Zhang, Xingwang ;
You, Jingbi .
ADVANCED ENERGY MATERIALS, 2020, 10 (13)